
General Principles

CHAPTER OBJECTIVES

■ To provide an introduction to the basic quantities and idealizations 
of mechanics.

■ To give a statement of Newton’s Laws of Motion and Gravitation.

■ To review the principles for applying the SI system of units.

■ To examine the standard procedures for performing numerical 
calculations.

■ To present a general guide for solving problems.

1.1 Mechanics

Mechanics is a branch of the physical sciences that is concerned with the 

state of rest or motion of bodies that are subjected to the action of forces. 

In general, this subject can be subdivided into three branches: rigid-body 
mechanics, deformable-body mechanics, and fluid mechanics. In this book 

we will study rigid-body mechanics since it is a basic requirement for the 

study of the mechanics of deformable bodies and the mechanics of fluids. 

Furthermore, rigid-body mechanics is essential for the design and analysis 

of many types of structural members, mechanical components, or electrical 

devices encountered in engineering.

Rigid-body mechanics is divided into two areas: statics and dynamics. 

Statics deals with the equilibrium of bodies, that is, those that are either 

at rest or move with a constant velocity; whereas dynamics is concerned 

with the accelerated motion of bodies. We can consider statics as a special 

case of dynamics, in which the acceleration is zero; however, statics 

deserves separate treatment in engineering education since many objects 

are designed with the intention that they remain in equilibrium.
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1
Historical Development. The subject of statics developed very 

early in history because its principles can be formulated simply from 

measurements of geometry and force. For example, the writings of 

Archimedes (287–212 B.C.) deal with the principle of the lever. Studies 

of the pulley, inclined plane, and wrench are also recorded in ancient 

writings—at times when the requirements for engineering were limited 

primarily to building construction.

Since the principles of dynamics depend on an accurate measurement 

of time, this subject developed much later. Galileo Galilei (1564–1642) 

was one of the first major contributors to this field. His work consisted of 

experiments using pendulums and falling bodies. The most significant 

contributions in dynamics, however, were made by Isaac Newton  

(1642–1727), who is noted for his formulation of the three fundamental 

laws of motion and the law of universal gravitational attraction. Shortly 

after these laws were postulated, important techniques for their 

application were developed by other scientists and engineers, some of 

whom will be mentioned throughout the text.

1.2 Fundamental Concepts

Before we begin our study of engineering mechanics, it is important to 

understand the meaning of certain fundamental concepts and principles.

Basic Quantities. The following four quantities are used throughout 

mechanics.

Length. Length is used to locate the position of a point in space and 

thereby describe the size of a physical system. Once a standard unit of 

length is defined, one can then use it to define distances and geometric 

properties of a body as multiples of this unit.

Time. Time is conceived as a succession of events. Although the 

principles of statics are time independent, this quantity plays an 

important role in the study of dynamics.

Mass. Mass is a measure of a quantity of matter that is used to 

compare the action of one body with that of another. This property 

manifests itself as a gravitational attraction between two bodies and 

provides a measure of the resistance of matter to a change in velocity.

Force. In general, force is considered as a “push” or “pull” exerted by 

one body on another. This interaction can occur when there is direct 

contact between the bodies, such as a person pushing on a wall, or it can 

occur through a distance when the bodies are physically separated. 

Examples of the latter type include gravitational, electrical, and magnetic 

forces. In any case, a force is completely characterized by its magnitude, 

direction, and point of application.
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Idealizations. Models or idealizations are used in mechanics in 

order to simplify application of the theory. Here we will consider three 

important idealizations.

Particle. A particle has a mass, but a size that can be neglected. For 

example, the size of the earth is insignificant compared to the size of its 

orbit, and therefore the earth can be modeled as a particle when studying 

its orbital motion. When a body is idealized as a particle, the principles of 

mechanics reduce to a rather simplified form since the geometry of the 

body will not be involved in the analysis of the problem.

Rigid Body. A rigid body can be considered as a combination of a 

large number of particles in which all the particles remain at a fixed 

distance from one another, both before and after applying a load. This 

model is important because the body’s shape does not change when a 

load is applied, and so we do not have to consider the type of material 

from which the body is made. In most cases the actual deformations 

occurring in structures, machines, mechanisms, and the like are relatively 

small, and the rigid-body assumption is suitable for analysis.

Concentrated Force. A concentrated force represents the effect of 

a loading which is assumed to act at a point on a body. We can represent 

a load by a concentrated force, provided the area over which the load is 

applied is very small compared to the overall size of the body. An 

example would be the contact force between a wheel and the ground.

Three forces act on the ring. Since these 
forces all meet at a point, then for any 
force analysis, we can assume the ring to 
be represented as a particle. (© Russell 
C. Hibbeler)

Steel is a common engineering material that does not deform 
very much under load. Therefore, we can consider this 
railroad wheel to be a rigid body acted upon by the 
concentrated force of the rail. (© Russell C. Hibbeler)
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1
Newton’s Three Laws of Motion. Engineering mechanics is 

formulated on the basis of Newton’s three laws of motion, the validity of 

which is  based on experimental observation. These laws apply to the 

motion of a particle as measured from a nonaccelerating reference frame. 

They may be briefly stated as follows.

First Law. A particle originally at rest, or moving in a straight line with 

constant velocity, tends to remain in this state provided the particle is not 
subjected to an unbalanced force, Fig. 1–1a.

Equilibrium

v
F2F1

F3

(a)

Second Law. A particle acted upon by an unbalanced force F 

experiences an acceleration a that has the same direction as the force 

and a magnitude that is directly proportional to the force, Fig. 1–1b.*  

If F is applied to a particle of mass m, this law may be expressed 

mathematically as

 F = ma  (1–1)

Accelerated motion

a
F

(b)

Third Law. The mutual forces of action and reaction between two 

particles are equal, opposite, and collinear, Fig. 1–1c.

Action – reaction

force of A on B

force of B on A

F F
A B

(c)

Fig. 1–1

*Stated another way, the unbalanced force acting on the particle is proportional to the 

time rate of change of the particle’s linear momentum.
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Newton’s Law of Gravitational Attraction. Shortly after 

formulating his three laws of motion, Newton postulated a law governing 

the gravitational attraction between any two particles. Stated mathematically,

  F = G 
m1m2

r2
 (1–2)

where

 F = force of gravitation between the two particles

 G  =  universal constant of gravitation; according to experimental 

evidence, G = 66.73(10-12) m3> (kg # s2)
 m1, m2 = mass of each of the two particles

 r = distance between the two particles

Weight. According to Eq. 1–2, any two particles or bodies have a 

mutual attractive (gravitational) force acting between them. In the case 

of a particle located at or near the surface of the earth, however, the only 

gravitational force having any sizable magnitude is that between the 

earth and the particle. Consequently, this force, termed the weight, will 

be the only gravitational force considered in our study of mechanics.

From Eq. 1–2, we can develop an approximate expression for finding the 

weight W of a particle having a mass m1 = m. If we assume the earth to be a 

nonrotating sphere of constant density and having a mass m2 = Me, then if  

r is the distance between the earth’s center and the particle, we have

W = G 
mMe

r2

Letting g = GMe>r2 yields

 W = mg  (1–3)

By comparison with F = ma, we can see that g is the acceleration due to 

gravity. Since it depends on r, then the weight of a body is not an absolute 

quantity. Instead, its magnitude is determined from where the measurement 

was made. For most engineering calculations, however, g is determined at 

sea level and at a latitude of 45°, which is considered the “standard location.”

1.3 Units of Measurement

The four basic quantities—length, time, mass, and force—are not all 

independent from one another; in fact, they are related by Newton’s 

second law of motion, F = ma. Because of this, the units used to measure 

these quantities cannot all be selected arbitrarily. The equality F = ma is 

maintained only if three of the four units, called base units, are defined 

and the fourth unit is then derived from the equation.

The astronaut’s weight is diminished since 
she is far removed from the gravitational 
field of the earth. (© NikoNomad/
Shutterstock)
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1
SI Units. The International System of units, abbreviated SI after the 

French “Système International d’Unités,” is a modern version of the 

metric system which has received worldwide recognition. As shown in 

Table 1–1, the SI system defines length in meters (m), time in seconds (s), 

and mass in kilograms (kg). The unit of force, called a newton (N), is 

derived from F = ma. Thus, 1 newton is equal to a force required to give 

1 kilogram of mass an acceleration of 1 m>s2 (N = kg # m>s2).

If the weight of a body located at the “standard location” is to be 

determined in newtons, then Eq. 1–3 must be applied. Here measurements 

give g = 9.806 65 m>s2; however, for calculations, the value g = 9.81 m>s2 

will be used. Thus,

  W = mg   (g = 9.81 m>s2) (1–4)

Therefore, a body of mass 1 kg has a weight of 9.81 N, a 2-kg body weighs 

19.62 N, and so on, Fig. 1–2a.

U.S. Customary. In the U.S. Customary system of units (FPS) 

length is measured in feet (ft), time in seconds (s), and force in pounds (lb), 

Table 1–1. The unit of mass, called a slug, is derived from F = ma. Hence, 

1 slug is equal to the amount of matter accelerated at 1 ft>s2 when acted 

upon by a force of 1 lb (slug = lb # s2>ft).

Therefore, if the measurements are made at the “standard location,” 

where g = 32.2 ft>s2, then from Eq. 1–3,

 m =
W
g
   (g = 32.2 ft>s2) (1–5)

And so a body weighing 32.2 lb has a mass of 1 slug, a 64.4-lb body has a 

mass of 2 slugs, and so on, Fig. 1–2b.

32.2 lb

1 slug

(b)

Fig. 1–2 

9.81 N

1 kg

(a)

TABLE 1–1 Systems of Units

Name Length Time Mass Force

International 

System of Units 

SI

meter

m

second

s

kilogram 

kg

newton*

N

¢kg # m
s2 ≤

U.S. Customary 

FPS

foot

ft

second

s

slug*

¢ lb # s2

ft
≤

pound

lb

*Derived unit.
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Conversion of Units. Table 1–2 provides a set of direct conversion 

factors between FPS and SI units for the basic quantities. Also, in the 

FPS system, recall that 1 ft = 12 in. (inches), 5280 ft = 1 mi (mile),  

1000 lb = 1 kip (kilo-pound), and 2000 lb = 1 ton.

1.4 The International System of Units

The SI system of units is used extensively in this book since it is intended to 

become the worldwide standard for measurement. Therefore, we will 

now present some of the rules for its use and some of its terminology 

relevant to engineering mechanics.

Prefixes. When a numerical quantity is either very large or very 

small, the units used to define its size may be modified by using a prefix. 

Some of the prefixes used in the SI system are shown in Table 1–3. Each 

represents a multiple or submultiple of a unit which, if applied 

successively, moves the decimal point of a numerical quantity to every 

third place.* For example, 4 000 000 N = 4 000 kN (kilo-newton) =  

4 MN (mega-newton), or 0.005 m = 5 mm (milli-meter). Notice that the 

SI system does not include the multiple deca (10) or the submultiple 

centi (0.01), which form part of the metric system. Except for some 

volume and area measurements, the use of these prefixes is to be avoided 

in science and engineering.

TABLE 1–2 Conversion Factors

Quantity
Unit of  

Measurement (FPS) Equals
Unit of  

Measurement (SI)

Force lb 4.448 N

Mass slug 14.59 kg

Length ft 0.3048 m

*The kilogram is the only base unit that is defined with a prefix.

TABLE 1–3 Prefixes

Exponential Form Prefix SI Symbol

Multiple
1 000 000 000 109 giga G

1 000 000 106 mega M

1 000 103 kilo k

Submultiple
0.001 10–3 milli m

0.000 001 10–6 micro m

0.000 000 001 10–9 nano n
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Rules for Use. Here are a few of the important rules that describe 

the proper use of the various SI symbols:

 Quantities defined by several units which are multiples of one 

another are separated by a dot to avoid confusion with prefix 

notation, as indicated by N = kg # m>s2 = kg # m # s-2. Also, m # s 

(meter-second), whereas ms (milli-second).

 The exponential power on a unit having a prefix refers to both the 

unit and its prefix. For example, mN2 = (mN)2 = mN # mN. Likewise, 

mm2 represents (mm)2 = mm # mm.

 With the exception of the base unit the kilogram, in general avoid 

the use of a prefix in the denominator of composite units. For 

example, do not write N>mm, but rather kN>m; also, m>mg should 

be written as Mm>kg.

 When performing calculations, represent the numbers in terms of 

their base or derived units by converting all prefixes to powers of 10. 

The final result should then be expressed using a single prefix. Also, 

after calculation, it is best to keep numerical values between 0.1 and 

1000; otherwise, a suitable prefix should be chosen. For example,

 (50 kN)(60 nm) = 350(103) N4 360(10-9) m4
 = 3000(10-6) N # m = 3(10-3) N # m = 3 mN # m

1.5 Numerical Calculations

Numerical work in engineering practice is most often performed by using 

handheld calculators and computers. It is important, however, that the 

answers to any problem be reported with justifiable accuracy using 

appropriate significant figures. In this section we will discuss these topics 

together with some other important aspects involved in all engineering 

calculations.

Dimensional Homogeneity. The terms of any equation used to 

describe a physical process must be dimensionally homogeneous; that is, 

each term must be expressed in the same units. Provided this is the case, 

all the terms of an equation can then be combined if numerical values 

are substituted for the variables. Consider, for example, the equation 

s = vt + 1
2  at2 , where, in SI units, s is the position in meters, m, t is time in 

seconds, s, v is velocity in m>s and a is acceleration in m>s2. Regardless of 

how this equation is evaluated, it maintains its dimensional homogeneity. 

In the form stated, each of the three terms is expressed in meters 3m, (m>s)s, (m>s2)s2
  4  or solving for a, a = 2s>t2 - 2v>t, the terms are 

each expressed in units of m>s2 3m>s2, m>s2, (m>s) >s4 .
Keep in mind that problems in mechanics always involve the solution 

of dimensionally homogeneous equations, and so this fact can then be 

used as a partial check for algebraic manipulations of an equation.

Computers are often used in engineering for 
advanced design and analysis. (© Blaize 
Pascall/Alamy)
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Significant Figures. The number of significant figures contained 

in any number determines the accuracy of the number. For instance, the 

number 4981 contains four significant figures. However, if zeros occur at 

the end of a whole number, it may be unclear as to how many significant 

figures the number represents. For example, 23 400 might have three 

(234), four (2340), or five (23 400) significant figures. To avoid these 

ambiguities, we will use engineering notation to report a result. This 

requires that numbers be rounded off to the appropriate number of 

significant digits and then expressed in multiples of (103), such as (103), 

(106), or (10–9). For instance, if 23 400 has five significant figures, it is 

written as 23.400(103), but if it has only three significant figures, it is 

written as 23.4(103).

If zeros occur at the beginning of a number that is less than one, then the 

zeros are not significant. For example, 0.008 21 has three significant 

figures. Using engineering notation, this number is expressed as 8.21(10–3). 

Likewise, 0.000 582 can be expressed as 0.582(10–3) or 582(10–6).

Rounding Off Numbers. Rounding off a number is necessary so 

that the accuracy of the result will be the same as that of the problem 

data. As a general rule, any numerical figure ending in a number greater 

than five is rounded up and a number less than five is not rounded up. 

The rules for rounding off numbers are best illustrated by examples. 

Suppose the number 3.5587 is to be rounded off to three significant 

figures. Because the fourth digit (8) is greater than 5, the third number is 

rounded up to 3.56. Likewise 0.5896 becomes 0.590 and 9.3866 becomes 

9.39. If we round off 1.341 to three significant figures, because the fourth 

digit (1) is less than 5, then we get 1.34. Likewise 0.3762 becomes 0.376 

and 9.871 becomes 9.87. There is a special case for any number that ends 

in a 5. As a general rule, if the digit preceding the 5 is an even number, 

then this digit is not rounded up. If the digit preceding the 5 is an odd 
number, then it is rounded up. For example, 75.25 rounded off to three 

significant digits becomes 75.2, 0.1275 becomes 0.128, and 0.2555 

becomes 0.256.

Calculations. When a sequence of calculations is performed, it is 

best to store the intermediate results in the calculator. In other words, do 

not round off calculations until expressing the final result. This procedure 

maintains precision throughout the series of steps to the final solution. In 

this text we will generally round off the answers to three significant 

figures since most of the data in engineering mechanics, such as geometry 

and loads, may be reliably measured to this accuracy.
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1 1.6 General Procedure for Analysis

Attending a lecture, reading this book, and studying the example problems 

helps, but the most effective way of learning the principles of engineering 
mechanics is to solve problems. To be successful at this, it is important to 

always present the work in a logical and orderly manner, as suggested by 

the following sequence of steps:

 Read the problem carefully and try to correlate the actual physical 

situation with the theory studied.

 Tabulate the problem data and draw to a large scale any necessary 

diagrams.

 Apply the relevant principles, generally in mathematical form. When 

writing any equations, be sure they are dimensionally homogeneous.

 Solve the necessary equations, and report the answer with no more 

than three significant figures.

 Study the answer with technical judgment and common sense to 

determine whether or not it seems reasonable.

When solving problems, do the work as 
neatly as possible. Being neat will 
stimulate clear and orderly thinking, 
and vice versa. (© Russell C. Hibbeler)

Important Points

  Statics is the study of bodies that are at rest or move with constant 

velocity.

  A particle has a mass but a size that can be neglected, and a rigid 

body does not deform under load.

  A force is considered as a “push” or “pull” of one body on another.

  Concentrated forces are assumed to act at a point on a body.

  Newton’s three laws of motion should be memorized.

  Mass is measure of a quantity of matter that does not change 

from one location to another. Weight refers to the gravitational 

attraction of the earth on a body or quantity of mass. Its magnitude 

depends upon the elevation at which the mass is located.

  In the SI system the unit of force, the newton, is a derived unit. 

The meter, second, and kilogram are base units.

  Prefixes G, M, k, m, m, and n are used to represent large and small 

numerical quantities. Their exponential size should be known, 

along with the rules for using the SI units.

  Perform numerical calculations with several significant figures, 

and then report the final answer to three significant figures.

  Algebraic manipulations of an equation can be checked in part by 

verifying that the equation remains dimensionally homogeneous.

  Know the rules for rounding off numbers.
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Convert 2 km>h to m>s How many ft>s is this?

SOLUTION
Since 1 km = 1000 m and 1 h = 3600 s, the factors of conversion are 

arranged in the following order, so that a cancellation of the units can 

be applied:

  2 km>h =
2 km

h
¢ 1000 m

km
≤ ¢ 1 h

3600 s
≤ 

  =
2000 m

3600 s
= 0.556 m>s Ans.

From Table 1–2, 1 ft = 0.3048 m. Thus,

  0.556 m>s = a 0.556 m
s
b a 1 ft

0.3048 m
b  

  = 1.82 ft>s Ans.

NOTE: Remember to round off the final answer to three significant 

figures.

EXAMPLE   1.1

EXAMPLE   1.2

Convert the quantities 300 lb # s and 52 slug>ft3 to appropriate SI units.

SOLUTION
Using Table 1–2, 1 lb = 4.448 N.

  300 lb # s = 300 lb # sa 4.448 N

1 lb
b  

  = 1334.5 N # s = 1.33 kN # s Ans.

Since 1 slug = 14.59 kg and 1 ft = 0.3048 m, then

  52 slug>ft3 =
52 slug

ft3
a 14.59 kg

1 slug
b a 1 ft

0.3048 m
b3

 

        = 26.8(103) kg>m3 

  = 26.8 Mg>m3  Ans.
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1 EXAMPLE   1.3 

Evaluate each of the following and express with SI units having an 

appropriate prefix: (a) (50 mN)(6 GN), (b) (400 mm)(0.6 MN)2,  

(c) 45 MN3>900 Gg.

SOLUTION
First convert each number to base units, perform the indicated 

operations, then choose an appropriate prefix.

Part (a)

  (50 mN)(6 GN) = 350(10-3) N4 36(109) N4  

  = 300(106) N2  

  = 300(106) N2a 1 kN

103 N
b a 1 kN

103 N
b  

  = 300 kN2  Ans.

NOTE: Keep in mind the convention kN2 = (kN)2 = 106 N2.

Part (b)

     (400 mm)(0.6 MN)2 = 3400(10-3) m4 30.6(106) N42

     = 3400(10-3) m4 30.36(1012) N24
     = 144(109) m # N2  

     = 144 Gm # N2  Ans.

We can also write

  144(109) m # N2 = 144(109) m # N2a 1 MN

106 N
b a 1 MN

106 N
b  

  = 0.144 m #MN2  Ans.

Part (c)

  
45 MN3

900 Gg
=

45(106 N)3

900(106) kg
 

  = 50(109) N3>kg  

  = 50(109) N3a 1 kN

103 N
b3 1

kg
 

  = 50 kN3>kg  Ans.
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1–1. What is the weight in newtons of an object that  

has a mass of (a) 8 kg, (b) 0.04 kg, and (c) 760 Mg?

1–2. Represent each of the following combinations of 

units in the correct SI form: (a) kN>ms, (b) Mg>mN, and  

(c) MN>(kg · ms).

1–3. Represent each of the following combinations of 

units in the correct SI form: (a) Mg>ms, (b) N>mm,  

(c) mN>(kg · ms).

*1–4. Convert: (a) 200 lb · ft to N · m, (b) 350 lb>ft3 to kN>m3, 

(c) 8 ft>h to mm>s. Express the result to three significant 

figures. Use an appropriate prefix.

1–5. Represent each of the following as a number between 

0.1 and 1000 using an appropriate prefix: (a) 45 320 kN, 

(b) 568(105) mm, and (c) 0.00563 mg.

1–6. Round off the following numbers to three significant 

figures: (a) 58 342 m, (b) 68.534 s, (c) 2553 N, and (d) 7555 kg.

1–7. Represent each of the following quantities in the 

correct SI form using an appropriate prefix: (a) 0.000 431 kg, 

(b) 35.3(103) N, (c) 0.005 32 km.

*1–8. Represent each of the following combinations of units 

in the correct SI form using an appropriate prefix: (a) Mg>mm, 

(b) mN>ms, (c) mm #Mg.

1–9. Represent each of the following combinations of 

units in the correct SI form using an appropriate prefix:  

(a) m>ms, (b) mkm, (c) ks>mg, and (d) km # mN.

1–10. Represent each of the following combinations of units 

in the correct SI form: (a) GN # mm, (b) kg>mm, (c) N>ks2, 

and (d) kN>ms.

1–11. Represent each of the following with SI units having 

an appropriate prefix: (a) 8653 ms, (b) 8368 N, (c) 0.893 kg.

*1–12. Evaluate each of the following to three significant 

figures and express each answer in SI units using  

an appropriate prefix: (a) (684 mm)>(43 ms),  

(b) (28 ms)(0.0458 Mm)>(348 mg), (c) (2.68 mm)(426 Mg).

1–13. The density (mass>volume) of aluminum is 

5.26 slug>ft3. Determine its density in SI units. Use an 

appropriate prefix.

1–14. Evaluate each of the following to three significant 

figures and express each answer in SI units using an 

appropriate prefix: (a) (212 mN)2, (b) (52 800 ms)2, and  

(c) [548(106)]1>2 ms.

1–15. Using the SI system of units, show that Eq. 1–2 is a 

dimen sionally homogeneous equation which gives F in 

newtons. Determine to three significant figures the 

gravitational force acting between two spheres that are 

touching each other. The mass of each sphere is 200 kg and 

the radius is 300 mm.

*1–16. The pascal (Pa) is actually a very small unit of 

pressure. To show this, convert 1 Pa = 1 N>m2 to lb>ft2. 
Atmosphere pressure at sea level is 14.7 lb>in2. How many 

pascals is this?

1–17. Water has a density of 1.94 slug>ft3. What is the 

density expressed in SI units? Express the answer to three 

significant figures.

1–18. Evaluate each of the following to three significant 

figures and express each answer in SI units using an 

appropriate prefix: (a) 354 mg(45 km)>(0.0356 kN), 

(b) (0.004 53 Mg)(201 ms), (c) 435 MN>23.2 mm.

1–19. A concrete column has a diameter of 350 mm and 

a length of 2 m. If the density (mass>volume) of concrete is 

2.45 Mg>m3, determine the weight of the column in pounds.

*1–20. If a man weighs 155 lb on earth, specify (a) his 

mass in slugs, (b) his mass in kilograms, and (c) his weight in 

newtons. If the man is on the moon, where the acceleration 

due to gravity is gm = 5.30 ft>s2, determine (d) his weight 

in pounds, and (e) his mass in kilograms.

1–21. Two particles have a mass of 8 kg and 12 kg, 

respectively. If they are 800 mm apart, determine the force 

of gravity acting between them. Compare this result with 

the weight of each particle.

PROBLEMS

The answers to all but every fourth problem (asterisk) are given in the back of the book.



This electric transmission tower is stabilized by cables that exert forces on the 
tower at their points of connection. In this chapter we will show how to express 

these forces as Cartesian vectors, and then determine their resultant.

Chapter 2

(© Vasiliy Koval/Fotolia)



Force Vectors

CHAPTER OBJECTIVES

■ To show how to add forces and resolve them into components 
using the Parallelogram Law.

■ To express force and position in Cartesian vector form and 
explain how to determine the vector’s magnitude and direction.

■ To introduce the dot product in order to use it to find the angle 
between two vectors or the projection of one vector onto another.

2.1 Scalars and Vectors

Many physical quantities in engineering mechanics are measured using 

either scalars or vectors.

Scalar. A scalar is any positive or negative physical quantity that can 

be completely specified by its magnitude. Examples of scalar quantities 

include length, mass, and time.

Vector. A vector is any physical quantity that requires both a 

magnitude and a direction for its complete description. Examples of 

vectors encountered in statics are force, position, and moment. A vector 

is shown graphically by an arrow. The length of the arrow represents the 

magnitude of the vector, and the angle u between the vector and a fixed 

axis defines the direction of its line of  action. The head or tip of the arrow 

indicates the sense of direction of the vector, Fig. 2–1.

In print, vector quantities are represented by boldface letters such as 

A, and the magnitude of a vector is italicized, A. For handwritten work, it 

is often convenient to denote a vector quantity by simply drawing an 

arrow above it, A   
S

.

Tail

Line of action
1

P

O

Head

A

20�

Fig. 2–1
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2.2 Vector Operations

Multiplication and Division of a Vector by a Scalar. If a 

vector is multiplied by a positive scalar, its magnitude is increased by that 

amount. Multiplying by a negative scalar will also change the directional 

sense of the vector. Graphic examples of these operations are shown  

in Fig. 2–2.

Vector Addition. When adding two vectors together it is important 

to account for both their magnitudes and their directions. To do this we 

must use the parallelogram law of addition. To illustrate, the two 

component vectors A and B in Fig. 2–3a are added to form a resultant 
vector R = A + B using the following procedure:

 First join the tails of the components at a point to make them 

concurrent, Fig. 2–3b.

 From the head of B, draw a line parallel to A. Draw another line 

from the head of A that is parallel to B. These two lines intersect at 

point P to form the adjacent sides of a parallelogram.

 The diagonal of this parallelogram that extends to P forms R, which 

then represents the resultant vector R = A + B, Fig. 2–3c.

A
A

2A

0.5

Scalar multiplication and division

�A
�

Fig. 2–2

A A

B
B

R

(a) (c)(b)

R � A � B

A

B

Parallelogram law

P

Fig. 2–3

We can also add B to A, Fig. 2–4a, using the triangle rule, which is a 

special case of the parallelogram law, whereby vector B is added to 

vector  A in a “head-to-tail” fashion, i.e., by connecting the head of  

A to the tail of B, Fig. 2–4b. The resultant R extends from the tail of A to 

the head of B. In a similar manner, R can also be obtained by adding  

A to B, Fig. 2–4c. By comparison, it is seen that vector addition is 

commutative; in other words, the vectors can be added in either order, 

i.e., R = A + B = B + A.
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As a special case, if the two vectors A and B are collinear, i.e., both 

have the same line of action, the parallelogram law reduces to an 

algebraic or scalar addition R = A + B, as shown in Fig. 2–5.

A

A

B

B

R

R

R � A � B R � B � A

(b)

Triangle rule Triangle rule

(c)

A

B

(a)

Fig. 2–4

A B

R

Addition of collinear vectors

R � A � B

Fig. 2–5

Vector Subtraction. The resultant of the difference between two 

vectors A and B of the same type may be expressed as

R� = A - B = A + (-B)

This vector sum is shown graphically in Fig. 2–6. Subtraction is therefore 

defined as a special case of addition, so the rules of vector addition also 

apply to vector subtraction.

R¿ A

�BB

A
�B

AR¿
or

Parallelogram law Triangle construction

Vector subtraction

Fig. 2–6
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2.3 Vector Addition of Forces

Experimental evidence has shown that a force is a vector quantity since 

it has a specified magnitude, direction, and sense and it adds according to 

the parallelogram law. Two common problems in statics involve either 

finding the resultant force, knowing its components, or resolving a known 

force into two components. We will now describe how each of these 

problems is solved using the parallelogram law.

Finding a Resultant Force. The two component forces F1 and F2 

acting on the pin in Fig. 2–7a can be added together to form the resultant 

force FR = F1 + F2, as shown in Fig. 2–7b. From this construction, or using 

the triangle rule, Fig. 2–7c, we can apply the law of cosines or the law of 

sines to the triangle in order to obtain the magnitude of the resultant 

force and its direction.

Finding the Components of a Force. Sometimes it is necessary 

to resolve a force into two components in order to study its pulling or 

pushing effect in two specific directions. For example, in Fig. 2–8a, F is to 

be resolved into two components along the two members, defined by the 

u and v axes. In order to determine the magnitude of each component, a 

parallelogram is constructed first, by drawing lines starting from the tip 

of F, one line parallel to u, and the other line parallel to v. These lines 

then intersect with the v and u axes, forming a parallelogram. The force 

components Fu and Fv are then established by simply joining the tail of F 

to the intersection points on the u and v axes, Fig. 2–8b. This parallelogram 

can then be reduced to a triangle, which represents the triangle rule,  

Fig. 2–8c. From this, the law of sines can then be applied to determine the 

unknown magnitudes of the components.

FR

F2F1

The parallelogram law must be used 
to determine the resultant of the 
two forces acting on the hook.  
(© Russell C. Hibbeler) 

FR � F1 � F2

FRFR

F1 F1 F1

F2 F2

F2

(c)(b)(a)

Fig. 2–7Fu
Fv

F
v u

Using the parallelogram law the 
supporting force F can be resolved into 
components acting along the u and v axes. 
(© Russell C. Hibbeler)
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Addition of Several Forces. If more than two forces are to be 

added, successive applications of the parallelogram law can be carried 

out in order to obtain the resultant force. For example, if three forces  

F1, F2, F3 act at a point O, Fig. 2–9, the resultant of any two of the forces 

is found, say, F1 + F2—and then this resultant is added to the third force, 

yielding the resultant of all three forces; i.e., FR = (F1 + F2) + F3. Using 

the parallelogram law to add more than two forces, as shown here, often 

requires extensive geometric and trigonometric calculation to determine 

the numerical values for the magnitude and direction of the resultant. 

Instead, problems of this type are easily solved by using the “rectangular-

component method,” which is explained in Sec. 2.4.

Fig. 2–9

F1

F2

F1 � F2 FR

F3O

Fig. 2–8

F

u

(b)

F

FuFu

(c)

F

u

(a)

v v

Fv

Fv

FR

F1 � F2

F1

F3

F2

The resultant force FR on the hook requires 
the addition of F1 + F2, then this resultant is 
added to F3. (© Russell C. Hibbeler)
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Important Points

  A scalar is a positive or negative number.

  A vector is a quantity that has a magnitude, direction, and sense.

  Multiplication or division of a vector by a scalar will change the 

magnitude of the vector. The sense of the vector will change if the 

scalar is negative.

  As a special case, if the vectors are collinear, the resultant is 

formed by an algebraic or scalar addition.

A

C

B

b

(c)

c

a

Sine law:

sin a sin b sin c
A B� � C

Cosine law:
C �   A2 � B2 � 2AB cos c

FR

F1

F2

F

Fu

u

(b)

(a)

v

Fv

Fig. 2–10

Procedure for Analysis

Problems that involve the addition of two forces can be solved as 

follows:

Parallelogram Law.
  Two “component” forces F1 and F2 in Fig. 2–10a add according to 

the parallelogram law, yielding a resultant force FR that forms the 

diagonal of the parallelogram.

  If a force F is to be resolved into components along two axes  

u and v, Fig. 2–10b, then start at the head of force F and construct 

lines parallel to the axes, thereby forming the parallelogram. The 

sides of the parallelogram represent the components, Fu and Fv.

  Label all the known and unknown force magnitudes and the angles 

on the sketch and identify the two unknowns as the magnitude and 

direction of FR, or the magnitudes of its components.

Trigonometry.
  Redraw a half portion of the parallelogram to illustrate the 

triangular head-to-tail addition of the components.

  From this triangle, the magnitude of the resultant force can be 

determined using the law of cosines, and its direction is 

determined from the law of sines. The magnitudes of two force 

components are determined from the law of sines. The formulas 

are given in Fig. 2–10c.



 2.3 VECTOR ADDITION OF FORCES 23

2 

The screw eye in Fig. 2–11a is subjected to two forces, F1 and F2. 

Determine the magnitude and direction of the resultant force.

EXAMPLE   2.1 

F1 � 100 N

F2 � 150 N
10�

15�

(a)

SOLUTION
Parallelogram Law. The parallelogram is formed by drawing a line 

from the head of F1 that is parallel to F2, and another line from  

the head of F2 that is parallel to F1. The resultant force FR extends to 

where these lines intersect at point A, Fig. 2–11b. The two unknowns 

are the magnitude of FR and the angle u (theta).

Trigonometry. From the parallelogram, the vector triangle is 

constructed, Fig. 2–11c. Using the law of cosines

  FR = 2(100 N)2 + (150 N)2 - 2(100 N)(150 N) cos 115�

  = 210 000 + 22 500 - 30 000(-0.4226) = 212.6 N 

  = 213 N Ans.

Applying the law of sines to determine u,

 
150 N

sin u
=

212.6 N

sin 115�
   sin u =

150 N

212.6 N
 (sin 115�)

  u = 39.8�

Thus, the direction f (phi) of FR, measured from the horizontal, is

 f = 39.8� + 15.0� = 54.8� Ans.

NOTE: The results seem reasonable, since Fig. 2–11b shows FR to have 

a magnitude larger than its components and a direction that is 

between them.

FR

90� � 25� � 65�

10�

15�

100 N

A

65�115�

150 N

(b)

� 115�
360� � 2(65�)

2

u

Fig. 2–11

(c)

FR 150 N

100 N15�

115�

u

f
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Resolve the horizontal 600-lb force in Fig. 2–12a into components 

acting along the u and v axes and determine the magnitudes of these 

components.

EXAMPLE   2.2 

u

30�

30�

30�

30�

30�

120�

120�

120�

30�

30�

600 lb

(a)

u

C

B

A
600 lb

(b)

Fu

F

(c)

600 lb

Fu

F

v

v

v

v

Fig. 2–12

SOLUTION
The parallelogram is constructed by extending a line from the head of 

the 600-lb force parallel to the v axis until it intersects the u axis at 

point B, Fig. 2–12b.  The arrow from A to B represents Fu.  Similarly, the 

line extended from the head of the 600-lb force drawn parallel to the 

u axis intersects the v axis at point C, which gives Fv.

The vector addition using the triangle rule is shown in Fig. 2–12c.  

The two unknowns are the magnitudes of Fu and Fv. Applying the law 

of sines,

  
Fu

sin 120�
=

600 lb

sin 30�
 

  Fu = 1039 lb Ans.

  
Fv

sin 30�
=

600 lb

sin 30�
 

  Fv = 600 lb  Ans.

NOTE: The result for Fu shows that sometimes a component can have 

a greater magnitude than the resultant.
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Determine the magnitude of the component force F in Fig. 2–13a and 

the magnitude of the resultant force FR if FR is directed along the 

positive y axis.

EXAMPLE   2.3

y

45�

45� 45�

45�

200 lb

30�

30�

30�

(a)

F

y

45�

200 lb

(b)

F
75�

60�60�
200 lb

(c)

F
FR FR

Fig. 2–13

SOLUTION
The parallelogram law of addition is shown in Fig. 2–13b, and the 

triangle rule is shown in Fig. 2–13c. The magnitudes of FR and F are the 

two unknowns. They can be determined by applying the law of sines.

  
F

sin 60�
=

200 lb

sin 45�
 

  F = 245 lb  Ans.

  
FR

sin 75�
=

200 lb

sin 45�
 

  FR = 273 lb  Ans.
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It is required that the resultant force acting on the eyebolt in Fig. 2–14a 

be directed along the positive x axis and that F2 have a minimum 

magnitude.  Determine this magnitude, the angle u, and the corresponding 

resultant force.

EXAMPLE   2.4

x x x

(a)

(b) (c)

FRFR

F2

F2

F2

F1 � 800 N

F1 � 800 N F1 � 800 N

u � 90�

u

u

60�
60�60�

Fig. 2–14

SOLUTION
The triangle rule for FR = F1 + F2 is shown in Fig. 2–14b. Since the 

magnitudes (lengths) of FR and F2 are not specified, then F2 can actually 

be any vector that has its head touching the line of action of FR, Fig. 2–14c. 

However, as shown, the magnitude of F2 is a minimum or the shortest 

length when its line of action is perpendicular to the line of action of 

FR, that is, when 

 u = 90� Ans.

Since the vector addition now forms the shaded right triangle, the two 

unknown magnitudes can be obtained by trigonometry.

  FR = (800 N)cos 60� = 400 N Ans.

  F2 = (800 N)sin 60� = 693 N Ans.

It is strongly suggested that you test yourself on the solutions to these 
examples, by covering them over and then trying to draw the 
parallelogram law, and thinking about how the sine and cosine laws 
are  used to determine the unknowns. Then before solving any of 
the  problems, try to solve the Preliminary Problems and some of the 
Fundamental Problems given on the next pages. The solutions and 
answers to these are given in the back of the book. Doing this throughout  
the book will help immensely in developing your problem-solving skills.
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PRELIMINARY PROBLEMS

u

v

(a)

70�

45�

30�

F � 200 N

u

(b)

v70�

120�

F � 400 N

u

(c)

v
30�

40�

F � 600 N

Prob. P2–2

P2–1. In each case, construct the parallelogram law to 

show FR = F1 + F2. Then establish the triangle rule, where  

FR = F1 + F2. Label all known and unknown sides and 

internal angles.

45

15

(a)

F1 � 200 N

F2 � 100 N

130

(b)

F1 � 400 N

F2 � 500 N

(c)

20�

F1 � 450 N

F2 � 300 N

P2–2. In each case, show how to resolve the force F into 

components acting along the u and v axes using the 

parallelogram law. Then establish the triangle rule to show 

FR = Fu + Fv. Label all known and unknown sides and 

interior angles.

Prob. P2–1

Partial solutions and answers to all Preliminary Problems are given in the back of the book. 
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F2–4. Resolve the 30-lb force into components along the  

u and v axes, and determine the magnitude of each of these 

components.

30 lb

u

v

30�

15�

 Prob. F2–4

F2–5. The force F = 450 lb acts on the frame. Resolve this 

force into components acting along members AB and AC, 

and determine the magnitude of each component.

A

C

B

450 lb

45�

30�

Prob. F2–5

F2–6. If force F is to have a component along the u axis of 

Fu = 6 kN, determine the magnitude of F and the magnitude 

of its component Fv along the v axis.

u

v

F
45�

105�

 Prob. F2–6

FUNDAMENTAL PROBLEMS

F2–1. Determine the magnitude of the resultant force 

acting on the screw eye and its direction measured clockwise 

from the x axis.

x

2 kN

6 kN

45�60�

 Prob. F2–1

F2–2. Two forces act on the hook. Determine the magnitude 

of the resultant force.

30�

40�

500 N

200 N

 Prob. F2–2

F2–3. Determine the magnitude of the resultant force and 

its direction measured counterclockwise from the positive 

x axis.

y

x

800 N

600 N

30�

 Prob. F2–3

Partial solutions and answers to all Fundamental Problems are given in the back of the book.
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PROBLEMS

2–1. If u = 60� and F = 450 N, determine the magnitude 

of the resultant force and its direction, measured 

counterclockwise from the positive x axis.

2–2. If the magnitude of the resultant force is to be 500 N, 

directed along the positive y axis, determine the magnitude 

of force F and its direction u.

x

y

700 N

F

u

15�

Probs. 2–1/2

2–3. Determine the magnitude of the resultant force 

FR = F1 + F2 and its direction, measured counterclockwise 

from the positive x axis.

y

F2 � 375 lb

x

F1 � 250 lb

45�

30�

Prob. 2–3

*2–4. The vertical force F acts downward at A on the two-

membered frame. Determine the magnitudes of the two 

components of F directed along the axes of AB and AC.  

Set F = 500 N.

2–5. Solve Prob. 2–4 with F = 350 lb.

F

C

B

A

30�

45�

Probs. 2–4/5

2–6. Determine the magnitude of the resultant force 

FR = F1 + F2 and its direction, measured clockwise from 

the positive u axis.

2–7. Resolve the force F1 into components acting along 

the u and v axes and determine the magnitudes of the 

components.

*2–8. Resolve the force F2 into components acting along 

the u and v axes and determine the magnitudes of the 

components.

u

v

75�

30�

30�

F1 � 4 kN

F2 � 6 kN

Probs. 2–6/7/8
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2–13. The force acting on the gear tooth is F = 20 lb. 
Resolve this force into two components acting along the 

lines aa and bb.

2–14. The component of force F acting along line aa is 

required to be 30 lb. Determine the magnitude of F and its 

component along line bb.

80�

60�

a

a
b

b

F

Probs. 2–13/14

2–15. Force F acts on the frame such that its component 

acting along member AB is 650 lb, directed from B 

towards A, and the component acting along member BC is 

500 lb, directed from B towards C. Determine the magnitude 

of F and its direction u. Set f =  60�.

*2–16. Force F acts on the frame such that its component 

acting along member AB is 650 lb, directed from B 

towards A. Determine the required angle f (0� … f … 45�) 
and the component acting along member BC. Set F = 850 lb 

and u = 30�.

A

B

C

F

45�

u

f

Probs. 2–15/16

2–9. If the resultant force acting on the support is to be 

1200 lb, directed horizontally to the right, determine the 

force F in rope A and the corresponding angle u.

60� 900 lb

A

B

F

u

Prob. 2–9

2–10. Determine the magnitude of the resultant force and its 

direction, measured counterclockwise from the positive x axis.

y

x

500 lb

800 lb

35�

40�

Prob. 2–10

2–11. The plate is subjected to the two forces at A and B as 

shown. If u = 60�, determine the magnitude of the resultant 

of these two forces and its direction measured clockwise 

from the horizontal.

*2–12. Determine the angle u for connecting member A to 

the plate so that the resultant force of FA and FB is directed 

horizontally to the right. Also, what is the magnitude of the 

resultant force?

A

B

FA � 8 kN

FB � 6 kN

40�

u

Probs. 2–11/12
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2–17. Determine the magnitude and direction of the 

resultant FR = F1 + F2 + F3 of the three forces by first 

finding the resultant F� = F1 + F2 and then forming 

FR = F� + F3.

2–18. Determine the magnitude and direction of the 

resultant FR = F1 + F2 + F3 of the three forces by first 

finding the resultant F� = F2 + F3 and then forming 

FR = F� + F1.

y

x

F2 � 20 N

F1 � 30 N

20�

3
5

4 F3 � 50 N

Probs. 2–17/18

2–19. Determine the design angle u (0� … u … 90�) for 

strut AB so that the 400-lb horizontal force has a component 

of 500 lb directed from A towards C. What is the component 

of force acting along member AB? Take f = 40�.

*2–20. Determine the design angle f (0� … f … 90�) 
between struts AB and AC so that the 400-lb horizontal 

force has a component of 600 lb which acts up to the left, in 

the same direction as from B towards A. Take u = 30�.

A

C

B

400 lb

u

f

Probs. 2–19/20

2–21. Determine the magnitude and direction of the 

resultant force, FR measured counterclockwise from 

the  positive x axis. Solve the problem by first finding the 

resultant F� = F1 + F2 and then forming FR = F� + F3.

2–22. Determine the magnitude and direction of the 

resultant force, measured counterclockwise from the positive 

x axis. Solve l by first finding the resultant F� = F2 + F3 and 

then forming FR = F� + F1.

x

y

90º

150º

F1 � 400 N
F2 � 200 N

F3 � 300 N

Probs. 2–21/22

2–23. Two forces act on the screw eye. If F1 = 400 N and 

F2 = 600 N, determine the angle u (0� … u … 180�) between 

them, so that the resultant force has a magnitude of 

FR = 800 N.

*2–24. Two forces F1 and F2 act on the screw eye. If their 

lines of action are at an angle u  apart and the magnitude of 

each force is F1 = F2 = F, determine the magnitude of the 

resultant force FR and the angle between FR and F1.

F2

F1

u

Probs. 2–23/24
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*2–28. Determine the magnitude of force F so that the 

resultant FR of the three forces is as small as possible. What 

is the minimum magnitude of FR?

6 kN

8 kN

F

30�

Prob. 2–28

2–29. If the resultant force of the two tugboats is 3 kN, 

directed along the positive x axis, determine the required 

magnitude of force FB and its direction u.

2–30. If FB = 3 kN and u = 45�, determine the magnitude 

of the resultant force of the two tugboats and its direction 

measured clockwise form the positive x axis.

2–31. If the resultant force of the two tugboats is required 

to be directed towards the positive x axis, and FB is to be a 

minimum, determine the magnitude of FR and FB and the 

angle u.

x

y
A

B

FB

FA � 2 kN

30�

C

u

Probs. 2–29/30/31

2–25. If F1 = 30 lb and F2 = 40 lb, determine the angles u 

and f so that the resultant force is directed along the 

positive x axis and has a magnitude of FR = 60 lb.

y

x
θ

φ

F1

F2

Prob. 2–25

2–26. Determine the magnitude and direction u of FA so 

that the resultant force is directed along the positive x axis 

and has a magnitude of 1250 N.

2–27. Determine the magnitude and direction, measured 

counterclockwise from the positive x axis, of the resultant 

force acting on the ring at O, if FA = 750 N and u = 45�.

x
30�

y

O

B

A

F = 800 N

FA

B

Probs. 2–26/27
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2.4  Addition of a System of Coplanar 
Forces

When a force is resolved into two components along the x and y axes, the 

components are then called rectangular components. For analytical work 

we can represent these components in one of two ways, using either scalar 

or Cartesian vector notation.

Scalar Notation. The rectangular components of force F shown in 

Fig. 2–15a are found using the parallelogram law, so that F = Fx + Fy. 

Because these components form a right triangle, they can be  

determined from

Fx = F cos u  and  Fy = F sin u

Instead of using the angle u, however, the direction of F can also be 

defined using a small “slope” triangle, as in the example shown in  

Fig. 2–15b. Since this triangle and the larger shaded triangle are similar, 

the proportional length of the sides gives

Fx

F
=

a
c
 

or

Fx = F a a
c
b

and

 
Fy

F
=

b
c

or

 Fy = -F a b
c
b

Here the y component is a negative scalar since Fy is directed along the 

negative y axis.

It is important to keep in mind that this positive and negative scalar 

notation is to be used only for computational purposes, not for graphical 

representations in figures. Throughout the book, the head of a vector 
arrow in any figure indicates the sense of the vector graphically; algebraic 

signs are not used for this purpose. Thus, the vectors in Figs. 2–15a and  

2–15b are designated by using boldface (vector) notation.* Whenever 

italic symbols are written near vector arrows in figures, they indicate the 

magnitude of the vector, which is always a positive quantity.

*Negative signs are used only in figures with boldface notation when showing equal but 

opposite pairs of vectors, as in Fig. 2–2.

(a)

F

y

x
Fx

Fy

u

Fy

Fx

(b)

F

y

x

a
b

c

Fig. 2–15
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Cartesian Vector Notation. It is also possible to represent the 

x and y components of a force in terms of Cartesian unit vectors i and j. 
They are called unit vectors because they have a dimensionless magnitude 

of 1, and so they can be used to designate the directions of the x and y 

axes, respectively, Fig. 2–16.*

Since the magnitude of each component of F is always a positive quantity, 

which is represented by the (positive) scalars Fx and Fy, then we can 

express F as a Cartesian vector,

F = Fx i + Fy   j

Coplanar Force Resultants. We can use either of the two 

methods just described to determine the resultant of several coplanar 
forces, i.e., forces that all lie in the same plane. To do this, each force is first 

resolved into its x and y components, and then the respective components 

are added using scalar algebra since they are collinear. The resultant force 

is then formed by adding the resultant components using the parallelogram 

law. For example, consider the three concurrent forces in Fig. 2–17a, which 

have x and y components shown in Fig. 2–17b. Using Cartesian vector 

notation, each force is first represented as a Cartesian vector, i.e.,

F1 = F1x i + F1y j
F2 = -F2x i + F2y j
F3 = F3x i - F3y j

The vector resultant is therefore

 FR = F1 + F2 + F3

 = F1x i + F1y   j - F2x i + F2y   j + F3x i -  F3y j
 = (F1x - F2x + F3x) i + (F1y + F2y - F3y) j
 = (FRx)i + (FRy)j

If scalar notation is used, then indicating the positive directions of 

components along the x and y axes with symbolic arrows, we have

 +h   (FR)x = F1x - F2x + F3x

 +  c   (FR)y = F1y + F2y - F3y

These are the same results as the i and j components of FR determined 

above.

*For handwritten work, unit vectors are usually indicated using a circumflex, e.g., î and ĵ. 
Also, realize that Fx and Fy in Fig. 2–16 represent the magnitudes of the components, which 

are always positive scalars. The directions are defined by i and j. If instead we used scalar 

notation, then Fx and Fy could be positive or negative scalars, since they would account for 

both the magnitude and direction of the components.

F

Fx

Fy

y

x
i

j

Fig. 2–16

F3

F1

F2

(a)

x

y

 

(b)

x

y

F2x

F2y
F1y

F1x

F3x

F3y

Fig. 2–17

F1

F2

F3F4
y

x

The resultant force of the four cable forces 
acting on the post can be determined by 
adding algebraically the separate x and y 
components of each cable force. This resultant 
FR produces the same pulling effect on the 
post as all four cables. (© Russell C. Hibbeler)
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We can represent the components of the resultant force of any number 

of coplanar forces symbolically by the algebraic sum of the x and y 

components of all the forces, i.e.,

 
(FR)x = �Fx

(FR)y = �Fy
 (2–1)

Once these components are determined, they may be sketched along 

the x and y axes with their proper sense of direction, and the resultant 

force can be determined from vector addition, as shown in Fig. 2–17c. 

From this sketch, the magnitude of FR is then found from the Pythagorean 

theorem; that is,

FR = 2(FR)2
x + (FR)2

y

Also, the angle u, which specifies the direction of the resultant force, is 

determined from trigonometry:

u = tan-1 2 (FR)y

(FR)x

2

The above concepts are illustrated numerically in the examples which 

follow.

(c)

x

y

FR(FR)y

(FR)x

u

Fig. 2–17 (cont.)

Important Points

  The resultant of several coplanar forces can easily be determined 

if an x, y coordinate system is established and the forces are 

resolved along the axes.

  The direction of each force is specified by the angle its line of 

action makes with one of the axes, or by a slope triangle.

  The orientation of the x and y axes is arbitrary, and their positive 

direction can be specified by the Cartesian unit vectors i and j.

  The x and y components of the resultant force are simply the 

algebraic addition of the components of all the coplanar forces.

  The magnitude of the resultant force is determined from the 

Pythagorean theorem, and when the resultant components are 

sketched on the x and y axes, Fig. 2–17c, the direction u can be 

determined from trigonometry.
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y

x

F2 � 260 N

(c)

5
12

13

F2x � 260 12——
13( (N

F2y � 260 5——
13( (N

Fig. 2–18

y

x

F1 � 200 N

F1x � 200 sin 30� N

30�

F1y � 200 cos 30� N

(b)

y

x

F1 � 200 N

F2 � 260 N

30�

(a)

5
12

13

Determine the x and y components of F1 and F2 acting on the boom 

shown in Fig. 2–18a. Express each force as a Cartesian vector.

SOLUTION
Scalar Notation. By the parallelogram law, F1 is resolved into x and y 

components, Fig. 2–18b. Since F1x acts in the -x direction, and F1y acts in 

the +y direction, we have

  F1x = -200 sin 30� N = -100 N = 100 N d   Ans. 

  F1y = 200 cos 30� N = 173 N = 173 Nc    Ans.

The force F2 is resolved into its x and y components, as shown in  

Fig. 2–18c. Here the slope of the line of action for the force is indicated. 

From this “slope triangle” we could obtain the angle u, e.g.,  

u = tan-11 5
122, and then proceed to determine the magnitudes of the 

components in the same manner as for F1. The easier method, however, 

consists of using proportional parts of similar triangles, i.e.,

 
F2x

260 N
=

12

13
 F2x = 260 Na 12

13
b = 240 N

Similarly,

F2y = 260 Na 5

13
b = 100 N

Notice how the magnitude of the horizontal component, F2x, was 

obtained by multiplying the force magnitude by the ratio of the 

horizontal leg of the slope triangle divided by the hypotenuse; whereas 

the magnitude of the vertical component, F2y, was obtained by 

multiplying the force magnitude by the ratio of the vertical leg divided 

by the hypotenuse. Hence, using scalar notation to represent these 

components, we have

  F2x = 240 N = 240 N S    Ans.

  F2y = -100 N = 100 NT    Ans.

Cartesian Vector Notation. Having determined the magnitudes 

and directions of the components of each force, we can express each 

force as a Cartesian vector.

  F1 = 5-100i + 173j6N Ans.

  F2 = 5240i - 100j6N Ans.

EXAMPLE   2.5
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y

F1 � 600 N

x

F2 � 400 N

30�

(b)

45�

y

F1 � 600 N

x

F2 � 400 N

45�

30�

(a)

The link in Fig. 2–19a is subjected to two forces F1 and F2. Determine 

the magnitude and direction of the resultant force.

SOLUTION I
Scalar Notation. First we resolve each force into its x and y 

components, Fig. 2–19b, then we sum these components algebraically.

 S+  (FR)x = �Fx;  (FR)x = 600 cos 30� N - 400 sin 45� N

  = 236.8 N S

 + c (FR)y = �Fy;   (FR)y = 600 sin 30� N + 400 cos 45� N

  = 582.8 Nc

The resultant force, shown in Fig. 2–19c, has a magnitude of

 FR = 2(236.8 N)2 + (582.8 N)2

  = 629 N Ans.

From the vector addition,

 u = tan-1a 582.8 N

236.8 N
b = 67.9� Ans.

SOLUTION II
Cartesian Vector Notation. From Fig. 2–19b, each force is first 

expressed as a Cartesian vector.

 F1 = 5600 cos 30�i + 600 sin 30�j6N

 F2 = 5-400 sin 45�i + 400 cos 45�j6N
Then,

FR = F1 + F2 = (600 cos 30� N - 400 sin 45� N)i

 + (600 sin 30� N + 400 cos 45� N)j

 = 5236.8i + 582.8j6N

The magnitude and direction of FR are determined in the same 

manner as before.

NOTE: Comparing the two methods of solution, notice that the use 

of scalar notation is more efficient since the components can be 

found directly, without first having to express each force as a 

Cartesian vector before adding the components. Later, however, we 

will show that Cartesian vector analysis is very beneficial for solving 

 three-dimensional problems.

EXAMPLE   2.6

y

FR

x

(c)

582.8 N

236.8 N

u

Fig. 2–19
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FR
296.8 N

383.2 N

(c)

y

�
x

u

Fig. 2–20

250 N

(b)

y

�

45�

400 N

4
x

 200 N

3
5

F3 � 200 N

(a)

y

�
x

F1 � 400 N

F2 � 250 N

3
5

4

45�

The end of the boom O in Fig. 2–20a is subjected to three concurrent 

and coplanar forces. Determine the magnitude and direction of the 

resultant force.

EXAMPLE   2.7

SOLUTION
Each force is resolved into its x and y components, Fig. 2–20b. Summing 

the x components, we have

 S+ (FR)x = �Fx;  (FR)x = -400 N + 250 sin 45� N - 20014
52 N

  = -383.2 N = 383.2 N d

The negative sign indicates that FRx acts to the left, i.e., in the negative 

x direction, as noted by the small arrow. Obviously, this occurs because 

F1 and F3 in Fig. 2–20b contribute a greater pull to the left than F2 

which pulls to the right. Summing the y components yields

 + c (FR)y = �Fy;  (FR)y = 250 cos 45� N + 20013
52 N

  = 296.8 Nc

The resultant force, shown in Fig. 2–20c, has a magnitude of

 FR = 2(-383.2 N)2 + (296.8 N)2

  = 485 N Ans.

From the vector addition in Fig. 2–20c, the direction angle u is

 u = tan-1a 296.8

383.2
b = 37.8�    Ans.

NOTE: Application of this method is more convenient, compared to 

using two applications of the parallelogram law, first to add F1 and F2 

then adding F3 to this resultant.
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FUNDAMENTAL PROBLEMS

F2–7. Resolve each force acting on the post into its x and  

y components.

3

45

y

x

F2 � 450 N
F1 � 300 N

F3 � 600 N

45�

Prob. F2–7
F2–8. Determine the magnitude and direction of the 

resultant force.

y

x
300 N

400 N

250 N

3
4

5

30�

Prob. F2–8
F2–9. Determine the magnitude of the resultant force 

acting on the corbel and its direction u measured 

counterclockwise from the x axis.

3

4 5

F2 � 400 lb

F1 � 700 lb

y

x

F3 � 600 lb

30�

Prob. F2–9

F2–10. If the resultant force acting on the bracket is to be 

750 N directed along the positive x axis, determine the 

magnitude of F and its direction u.

F

600 N

325 N

12

5

13

y

x
u

45�

Prob. F2–10

F2–11. If the magnitude of the resultant force acting on 

the bracket is to be 80 lb directed along the u axis, determine 

the magnitude of F and its direction u.

90 lb

50 lb

F

3

4
5

x

u

y

45�

u

Prob. F2–11

F2–12. Determine the magnitude of the resultant force 

and its direction u measured counterclockwise from the 

positive x axis.

F3 � 15 kN

F2 � 20 kN
F1 � 15 kN

y

x

44
33 55

Prob. F2–12
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PROBLEMS

*2–32. Determine the magnitude of the resultant force 

and  its direction, measured counterclockwise from the 

positive x axis.

y

x

30�

F1 � 200 N

F2 � 150 N

45�

Prob. 2–32

2–33. Determine the magnitude of the resultant force and 

its direction, measured clockwise from the positive x axis.

 800 N

 400 N

x

y

B

45�

30�

Prob. 2–33

2–34. Resolve F1 and F2 into their x and y components.

2–35. Determine the magnitude of the resultant force 
and its direction measured counterclockwise from the 
positive x axis.

F1 � 400 N

F2 � 250 N

x

y

60�

30�

45�

Probs. 2–34/35

*2–36. Resolve each force acting on the gusset plate into 

its x and y components, and express each force as a 

Cartesian vector.

2–37. Determine the magnitude of the resultant force 

acting on the plate and its direction, measured counter-

clockwise from the positive x axis.

F1 � 900 N

F2 � 750 N

45�

F3 � 650 N

3
4

5

x

y

Probs. 2–36/37
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2–42. Express F1, F2, and F3 as Cartesian vectors.

2–43. Determine the magnitude of the resultant force and its 

direction, measured counterclockwise from the positive x axis.

y

x

30�

45�

F2 � 625 N

F1 � 850 N

F3 � 750 N

5

4
3

Probs. 2–42/43

*2–44. Determine the magnitude of the resultant force 

and its direction, measured clockwise from the positive 

x axis.

x

y

12

3

5

5

13

4

 30 lb

 40 lb

 91 lb

Prob. 2–44

2–45. Determine the magnitude and direction u of the 

resultant force FR. Express the result in terms of the 

magnitudes of the components F1 and F2 and the angle f.

F1 FR

F2

u

f

Prob. 2–45

2–38. Express each of the three forces acting on the 

support in Cartesian vector form and determine the 

magnitude of the resultant force and its direction, measured 

clockwise from positive x axis.

y

x

F2 � 80 N

F1 � 50 N

15�

3

4
5

4

F3 � 30 N

Prob. 2–38

2–39. Determine the x and y components of F1 and F2.

*2–40. Determine the magnitude of the resultant force 

and  its direction, measured counterclockwise from the 

positive x axis.

y

x

30�

F1 � 200 N

F2 � 150 N

45�

Probs. 2–39/40

2–41. Determine the magnitude of the resultant force 

and its direction, measured counterclockwise from the 

positive x axis.

y

x

F2 � 5 kN 

F1 � 4 kN 

F3 � 8 kN 

60�

45�

Prob. 2–41
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2–50. Express F1, F2, and F3 as Cartesian vectors.

2–51. Determine the magnitude of the resultant force 

and its direction, measured counterclockwise from the 

positive x axis.

30�

y

x

F2 � 26 kN

F3 � 36 kN

5
12

13

F1 � 15 kN
40�

Probs. 2–50/51

*2–52. Determine the x and y components of each force 
acting on the gusset plate of a bridge truss. Show that the 
resultant force is zero.

y

x

3
4

5 3
45

F1 � 8 kN

F2 � 6 kN

F3 � 4 kNF4 � 6 kN

Prob. 2–52

2–46. Determine the magnitude and orientation u of FB so 

that the resultant force is directed along the positive y axis 

and has a magnitude of 1500 N.

2–47. Determine the magnitude and orientation, measured 

counterclockwise from the positive y axis, of the resultant 

force acting on the bracket, if FB = 600 N and u = 20�.

y

x

30�B
A

u

FA � 700 N
FB

Probs. 2–46/47

*2–48. Three forces act on the bracket. Determine the 

magnitude and direction u of F1 so that the resultant force 

is directed along the positive x � axis and has a magnitude 

of 800 N.

2–49. If F1 = 300 N and u = 10�, determine the magnitude 

and direction, measured counterclockwise from the positive 

x � axis, of the resultant force acting on the bracket.

60�

y

x

F2 � 200 N

F3 � 180 N
F1

x¿

5

12

13
u

Probs. 2–48/49
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*2–56. If the magnitude of the resultant force acting on 

the bracket is to be 450 N directed along the positive u axis, 

determine the magnitude of F1 and its direction f.

2–57. If the resultant force acting on the bracket is 

required to be a minimum, determine the magnitudes of F1 

and the resultant force.  Set f = 30°.

5

12 13

y

x

u

F3 � 260 N

F2 � 200 N

F1

f

30�

Probs. 2–56/57

2–58. Three forces act on the bracket. Determine the 

magnitude and direction u of F so that the resultant force is 

directed along the positive x � axis and has a magnitude 

of 8 kN.

2–59. If F = 5 kN and u = 30°, determine the magnitude of 

the resultant force and its direction, measured counter-

clockwise from the positive x axis.

6 kN

4 kN

x'

x

y

F

15�

30�

u

Probs. 2–58/59

2–53. Express F1 and F2 as Cartesian vectors.

2–54. Determine the magnitude of the resultant force and 

its direction measured counterclockwise from the positive 

x axis.

F1 � 30 kN

F2 � 26 kN

12

5

13

x

y

30�

Probs. 2–53/54

2–55. Determine the magnitude of force F so that the 

resultant force of the three forces is as small as possible. 

What is the magnitude of the resultant force?

F

8 kN

14 kN

45�30�

Prob. 2–55



Equilibrium of a 
Particle

CHAPTER OBJECTIVES

■ To introduce the concept of the free-body diagram for a particle.

■ To show how to solve particle equilibrium problems using the 
equations of equilibrium.

3.1  Condition for the Equilibrium  
of a Particle

A particle is said to be in equilibrium if it remains at rest if originally at 

rest, or has a constant velocity if originally in motion. Most often, however, 

the term “equilibrium” or, more specifically, “static equilibrium” is used 

to describe an object at rest. To maintain equilibrium, it is necessary to 

satisfy Newton’s first law of motion, which requires the resultant force 

acting on a particle to be equal to zero. This condition is stated by the 

equation of equilibrium,

 �F = 0 (3–1)

where �F is the vector sum of all the forces acting on the particle.

Not only is Eq. 3–1 a necessary condition for equilibrium, it is also a 

sufficient condition. This follows from Newton’s second law of motion, 

which can be written as �F = ma. Since the force system satisfies  

Eq. 3–1, then ma = 0, and therefore the particle’s acceleration a = 0. 
Consequently, the particle indeed moves with constant velocity or 

remains at rest.
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3.2 The Free-Body Diagram

To apply the equation of equilibrium, we must account for all the known 

and unknown forces (�F) which act on the particle. The best way to do 

this is to think of the particle as isolated and “free” from its surroundings. 

A drawing that shows the particle with all the forces that act on it is called 

a free-body diagram (FBD).
Before presenting a formal procedure as to how to draw a free-body 

diagram, we will first consider three types of supports often encountered 

in particle equilibrium problems.

Springs. If a linearly elastic spring (or cord) of undeformed length 

l0 is used to support a particle, the length of the spring will change in 

direct proportion to the force F acting on it, Fig. 3–1a. A characteristic 

that defines the “elasticity” of a spring is the spring constant or stiffness k.

The magnitude of force exerted on a linearly elastic spring which has a 

stiffness k and is deformed (elongated or compressed) a distance 

s = l - l0, measured from its unloaded position, is

 F = ks  (3–2)

If s is positive, causing an elongation, then F must pull on the spring; 

whereas if s is negative, causing a shortening, then F must push on it. For 

example, if the spring in Fig. 3–1a has an unstretched length of 0.8 m and 

a stiffness k = 500 N>m and it is stretched to a length of 1 m,  

so that s = l - l0 = 1 m - 0.8 m = 0.2 m, then a force F = ks =  

500 N>m(0.2 m) = 100 N is needed.

Cables and Pulleys. Unless otherwise stated throughout this 

book, except in Sec. 7.4, all cables (or cords) will be assumed to have 

negligible weight and they cannot stretch. Also, a cable can support only 

a tension or “pulling” force, and this force always acts in the direction of 

the cable. In Chapter 5, it will be shown that the tension force developed 

in a continuous cable which passes over a frictionless pulley must have a 

constant magnitude to keep the cable in equilibrium. Hence, for any 

angle u, shown in Fig. 3–1b, the cable is subjected to a constant tension T 

throughout its length.

Smooth Contact. If an object rests on a smooth surface, then the 

surface will exert a force on the object that is normal to the surface at 

the point of contact. An example of this is shown in Fig. 3–2a. In 

addition to this normal force N, the cylinder is also subjected to its 

weight W and the force T of the cord. Since these three forces are 

concurrent at the center of the cylinder, Fig. 3–2b, we can apply the 

equation of equilibrium to this “particle,” which is the same as applying 

it to the cylinder.

F

�s

l

l0

T

T

u

Fig. 3–1

T

W
N

T

30�
30�

20�

20�

(a) (b)

Fig. 3–2

Cable is in tension

(a)

(b)
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Procedure for Drawing a Free-Body Diagram

Since we must account for all the forces acting on the particle when 

applying the equations of equilibrium, the importance of first 

drawing a free-body diagram cannot be overemphasized. To construct 

a free-body diagram, the following three steps are necessary.

Draw Outlined Shape.
Imagine the particle to be isolated or cut “free” from its surroundings. 

This requires removing all the supports and drawing the particle’s 

outlined shape.

Show All Forces.
Indicate on this sketch all the forces that act on the particle. These 

forces can be active forces, which tend to set the particle in motion, 

or they can be reactive forces which are the result of the constraints 

or supports that tend to prevent motion. To account for all these 

forces, it may be helpful to trace around the particle’s boundary, 

carefully noting each force acting on it.

Identify Each Force.
The forces that are known should be labeled with their proper 

magnitudes and directions. Letters are used to represent the 

magnitudes and directions of forces that are unknown.

W

T

The bucket is held in equilibrium by 
the cable, and instinctively we know 
that the force in the cable must 
equal the weight of the bucket. By 
drawing a free-body diagram of the 
bucket we can understand why this 
is so. This diagram shows that there 
are only two forces acting on the 
bucket, namely, its weight W and the 
force T of the cable. For equilibrium, 
the resultant of these forces must be 
equal to zero, and so T = W .  
(© Russell C. Hibbeler)

TBTA

5(9.81) N

A B

The 5-kg plate is suspended by two straps 
A and B. To find the force in each strap 
we  should consider the free-body diagram 
of the plate. As noted, the three forces 
acting  on it are concurrent at the center. 
(© Russell C. Hibbeler)
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The sphere in Fig. 3–3a has a mass of 6 kg and is supported as shown. 

Draw a free-body diagram of the sphere, the cord CE, and the knot at C.

EXAMPLE     3.1 

45�

60�

C

E

B

A

(a)

D

k

30� 30�

SOLUTION

Sphere. Once the supports are removed, we can see that there  

are four forces acting on the sphere, namely, its weight,  

6 kg (9.81 m>s2) = 58.9 N, the force of cord CE, and the two normal 

forces caused by the smooth inclined planes. The free-body diagram is 

shown in Fig. 3–3b.

Cord CE. When the cord CE is isolated from its surroundings, its  

free-body diagram shows only two forces acting on it, namely, the force of 

the sphere and the force of the knot, Fig. 3–3c. Notice that FCE shown here 

is equal but opposite to that shown in Fig. 3–3b, a consequence of Newton’s 

third law of action–reaction. Also, FCE and FEC pull on the cord and keep 

it in tension so that it doesn’t collapse. For equilibrium, FCE = FEC.

Knot. The knot at C is subjected to three forces, Fig. 3–3d. They are 

caused by the cords CBA and CE and the spring CD. As required, the 

free-body diagram shows all these forces labeled with their magnitudes 

and directions. It is important to recognize that the weight of the 

sphere does not directly act on the knot. Instead, the cord CE subjects 

the knot to this force.

Fig. 3–3

(Force of cord CE
acting on sphere)

(b)

30� 30�

NA NB

(Forces of smooth planes
acting on sphere)

58.9 N
(Weight or gravity acting on sphere)

FCE

FCE (Force of sphere acting on cord CE)

FEC (Force of knot acting on cord CE)

(c)

C

FCBA (Force of cord CBA acting on knot)

FCD (Force of spring acting on knot)

FCE (Force of cord CE acting on knot)

60�

(d)
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3.3 Coplanar Force Systems

If a particle is subjected to a system of coplanar forces that lie in the x–y 

plane, as in Fig. 3–4, then each force can be resolved into its i and j 
components. For equilibrium, these forces must sum to produce a zero 

force resultant, i.e.,

 �F = 0

 �Fx  i + �Fy  j = 0

For this vector equation to be satisfied, the resultant force’s x and y 

components must both be equal to zero. Hence,

 
�Fx = 0

�Fy = 0
 (3–3)

These two equations can be solved for at most two unknowns, generally 

represented as angles and magnitudes of forces shown on the particle’s 

free-body diagram.

When applying each of the two equations of equilibrium, we must 

account for the sense of direction of any component by using an algebraic 
sign which corresponds to the arrowhead direction of the component 

along the x or y axis. It is important to note that if a force has an unknown 
magnitude, then the arrowhead sense of the force on the free-body 

diagram can be assumed. Then if the solution yields a negative scalar, this 

indicates that the sense of the force is opposite to that which was assumed.

For example, consider the free-body diagram of the particle subjected to 

the two forces shown in Fig. 3–5. Here it is assumed that the unknown 
force  F acts to the right, that is, in the positive x direction, to maintain 

equilibrium. Applying the equation of equilibrium along the x axis, we have

S+ �Fx = 0;          +F + 10 N = 0

Both terms are “positive” since both forces act in the positive x 

direction. When this equation is solved, F = -10 N. Here the negative 
sign indicates that F must act to the left to hold the particle in 

equilibrium, Fig. 3–5. Notice that if the +x axis in Fig. 3–5 were directed 

to the left, both terms in the above equation would be negative, but 

again, after solving, F = -10 N, indicating that F would have to be 

directed to the left.

y

F2

F1

F3
F4

x

Fig. 3–4

F
x

10 N

Fig. 3–5
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Important Points

The first step in solving any equilibrium problem is to draw the 

particle’s free-body diagram. This requires removing all the supports 

and isolating or freeing the particle from its surroundings and then 

showing all the forces that act on it.

Equilibrium means the particle is at rest or moving at constant 

velocity. In two dimensions, the necessary and sufficient conditions 

for equilibrium require �Fx = 0 and �Fy = 0.

Procedure for Analysis

Coplanar force equilibrium problems for a particle can be solved 

using the following procedure.

Free-Body Diagram.
  Establish the x, y axes in any suitable orientation.

  Label all the known and unknown force magnitudes and 

directions on the diagram.

  The sense of a force having an unknown magnitude can be 

assumed.

Equations of Equilibrium.
  Apply the equations of equilibrium, �Fx = 0 and �Fy = 0. For 

convenience, arrows can be written alongside each equation to 

define the positive directions. 

  Components are positive if they are directed along a positive axis, 

and negative if they are directed along a negative axis.

  If more than two unknowns exist and the problem involves a 

spring, apply F = ks to relate the spring force to the deformation 

s of the spring.

  Since the magnitude of a force is always a positive quantity, then if 

the solution for a force yields a negative result, this indicates that 

its sense is the reverse of that shown on the free-body diagram.

TC
TB

TD

y

xA

B

D

A

C

The chains exert three forces on the ring at A, 
as shown on its free-body diagram. The ring 
will not move, or will move with constant 
velocity, provided the summation of these 
forces along the x and along the y axis equals 
zero. If one of the three forces is known, the 
magnitudes of the other two forces can be 
obtained from the two equations of 
equilibrium. (© Russell C. Hibbeler)



3

 3.3 COPLANAR FORCE SYSTEMS 93

Determine the tension in cables BA and BC necessary to support the 

60-kg cylinder in Fig. 3–6a.

(a)

B

3

4

5

A

D

C

45�

SOLUTION
Free-Body Diagram. Due to equilibrium, the weight of the cylinder 

causes the tension in cable BD to be TBD = 60(9.81) N, Fig. 3–6b. The 

forces in cables BA  and BC can be determined by investigating the 

equilibrium of ring B. Its free-body diagram is shown in Fig. 3–6c. The 

magnitudes of TA  and TC are unknown, but their directions are known.

Equations of Equilibrium. Applying the equations of equilibrium 

along the x and y axes, we have

S+ �Fx = 0; TC cos 45� - 14
52TA = 0 (1)

+ c �Fy = 0;  TC sin 45� + 13
52TA - 60(9.81) N = 0 (2)

Equation (1) can be written as TA = 0.8839TC. Substituting this into 

Eq. (2) yields

TC sin 45� + 13
52(0.8839TC) - 60(9.81) N = 0

so that

 TC = 475.66 N = 476 N  Ans.

Substituting this result into either Eq. (1) or Eq. (2), we get

 TA = 420 N Ans.
NOTE: The accuracy of these results, of course, depends on the accuracy 

of the data, i.e., measurements of geometry and loads. For most 

engineering work involving a problem such as this, the data as measured 

to three significant figures would be sufficient.

EXAMPLE    3.2

Fig. 3–6

60 (9.81) N

TBD � 60 (9.81) N

(b)

TBD � 60 (9.81) N

TA TC

y

x

(c)

B

3

4

5
45�
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The 200-kg crate in Fig. 3–7a is suspended using the ropes AB and AC. Each 

rope can withstand a maximum force of 10 kN before it breaks. If AB 

always remains horizontal, determine the smallest angle u to which the 

crate can be suspended before one of the ropes breaks.

EXAMPLE    3.3 

FD � 1962 N

y

x

(b)

A

FC

FBu

Fig. 3–7
SOLUTION
Free-Body Diagram. We will study the equilibrium of ring A . There 

are three forces acting on it, Fig. 3–7b. The magnitude of FD is equal to 

the weight of the crate, i.e., FD = 200 (9.81) N = 1962 N 6 10 kN.

Equations of Equilibrium. Applying the equations of equilibrium 

along the x and y axes,

S+ �Fx = 0; -FC cos u + FB = 0;  FC =
FB

cos u
 (1)

+ c �Fy = 0; FC sin u - 1962 N = 0 (2)

From Eq. (1), FC is always greater than FB since cos u … 1. Therefore, 

rope AC will reach the maximum tensile force of 10 kN before rope AB. 

Substituting FC = 10 kN into Eq. (2), we get

 [10(103) N] sin u - 1962 N = 0

 u = sin- 1(0.1962) = 11.31� = 11.3�  Ans.

The force developed in rope AB can be obtained by substituting the 

values for u and FC into Eq. (1).

 10(103) N =
FB

cos 11.31�

 FB = 9.81 kN

(a)

D

A B

C u
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Determine the required length of cord AC in Fig. 3–8a so that the 8-kg 

lamp can be suspended in the position shown. The undeformed length 

of spring AB is l�AB = 0.4 m, and the spring has a stiffness of 

kAB = 300 N>m.

(a)

A B

� 300 N/m
30�

2 m

C

kAB

EXAMPLE    3.4

Fig. 3–8
SOLUTION
If the force in spring AB is known, the stretch of the spring can be 

found using F = ks. From the problem geometry, it is then possible to 

calculate the required length of AC.

Free-Body Diagram. The lamp has a weight W = 8(9.81) = 78.5 N 

and so the free-body diagram of the ring at A is shown in Fig. 3–8b.

Equations of Equilibrium. Using the x, y axes,

S+ �Fx = 0; TAB - TAC cos 30� = 0

+ c �Fy = 0; TAC sin 30� - 78.5 N = 0

Solving, we obtain

  TAC = 157.0 N

  TAB = 135.9 N

The stretch of spring AB is therefore

TAB = kABsAB;  135.9 N = 300 N>m(sAB)

           sAB = 0.453 m

so the stretched length is

 lAB = l�AB + sAB

 lAB = 0.4 m + 0.453 m = 0.853 m

The horizontal distance from C to B, Fig. 3–8a, requires

  2 m = lAC cos 30� + 0.853 m

  lAC = 1.32 m  Ans.

y

x

W � 78.5 N

A

(b)

30�

TAC

TAB
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P3–1. In each case, draw a free-body diagram of the ring 

at A and identify each force.

(a)

A

Weight
200 N

B C

4

3

5

30�

  PRELIMINARY PROBLEMS

P3–2. Write the two equations of equilibrium, �Fx = 0 

and �Fy = 0. Do not solve.

x

1

P

(a)

600 N

F

y

13
4

5

60�

(b)

A

600 N

C

B

4
3

5

30�

(c)

A

D

500 N

200 N

C

B 30�

45�

Prob. P3–1 Prob. P3–2

x

P

(b)

200 N

F

y

3
4

5

105�

60�

x

P

(c)

450 N 

F
y

300 N 

30�

40�

20�
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F3–4. The block has a mass of 5 kg and rests on the smooth 

plane. Determine the unstretched length of the spring.

45�

0.4 m

0.3 m

k � 200 N/m

Prob. F3–4

F3–5. If the mass of cylinder C is 40 kg, determine the 

mass of cylinder A in order to hold the assembly in the 

position shown.

 40 kg

D

A

C

E

B

30�

Prob. F3–5

F3–6. Determine the tension in cables AB, BC, and CD, 

necessary to support the 10-kg and 15-kg traffic lights at B 

and C, respectively. Also, find the angle u.

B

A

C

D

u15�

Prob. F3–6

All problem solutions must include an FBD.

F3–1. The crate has a weight of 550 lb. Determine the 

force in each supporting cable.

30�

4
35

A

B
C

D

Prob. F3–1

F3–2. The beam has a weight of 700 lb. Determine the 

shortest cable ABC that can be used to lift it if the maximum 

force the cable can sustain is 1500 lb.

10 ft

A C

B

u u

Prob. F3–2

F3–3. If the 5-kg block is suspended from the pulley B and 

the sag of the cord is d = 0.15 m, determine the force in cord 

ABC. Neglect the size of the pulley.

d � 0.15 m

D

A C

B

0.4 m

Prob. F3–3

  FUNDAMENTAL PROBLEMS



98  CHAPTER 3  EQUIL IBR IUM OF A PART ICLE

3

*3–4. The bearing consists of rollers, symmetrically 

confined within the housing. The bottom one is subjected to 

a 125-N force at its contact A due to the load on the shaft. 

Determine the normal reactions NB and NC on the bearing 

at its contact points B and C for equilibrium.

B

125 N

A

C

40�

NB

NC

Prob. 3–4

3–5. The members of a truss are connected to the gusset 

plate. If the forces are concurrent at point O, determine the 

magnitudes of F and T for equilibrium. Take u = 90�.

3–6. The gusset plate is subjected to the forces of three 

members. Determine the tension force in member C and its 

angle u for equilibrium. The forces are concurrent at point O. 

Take F = 8 kN.

x

y

A

O

F

T

9 kN

C

u

B
4

5 3

Probs. 3–5/6

All problem solutions must include an FBD.

3–1. The members of a truss are pin connected at joint O. 

Determine the magnitudes of F1 and F2 for equilibrium.  

Set u = 60�.

3–2. The members of a truss are pin connected at joint O. 

Determine the magnitude of F1 and its angle u for 

equilibrium. Set F2 = 6 kN.

u

F1

F270�

30�

7 kN

5 kN

4

y

x
O

3
5

Probs. 3–1/2

3–3. Determine the magnitude and direction u of F so that 

the particle is in equilibrium.

y

5 kN

8 kN

4 kN

F

x

60�

30�

u

Prob. 3–3

    PROBLEMS
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3–7. The man attempts to pull down the tree using the 

cable and small pulley arrangement shown. If the tension in 

AB is 60 lb, determine the tension in cable CAD and the 

angle u which the cable makes at the pulley.

20�

B

A

C

D

30�

u

Prob. 3–7

*3–8. The cords ABC and BD can each support a 

maximum load of 100 lb. Determine the maximum weight 

of the crate, and the angle u for equilibrium.

12

5

13

B

A

C

D

u

Prob. 3–8

3–9. Determine the maximum force F that can be 

supported in the position shown if each chain can support a 

maximum tension of 600 lb before it fails.

CA

B

4 5

3

30�

F

Prob. 3–9

3–10. The block has a weight of 20 lb and is being hoisted 

at uniform velocity. Determine the angle u for equilibrium 

and the force in cord AB.

3–11. Determine the maximum weight W of the block 

that can be suspended in the position shown if cords AB 

and CAD can each support a maximum tension of 80 lb. 

Also, what is the angle u for equilibrium?

B

F

20� A

C

Du

Probs. 3–10/11
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3–12. The lift sling is used to hoist a container having a 

mass of 500 kg. Determine the force in each of the cables  

AB and AC as a function of u. If the maximum tension 

allowed in each cable is 5 kN, determine the shortest length 

of cables AB and AC that can be used for the lift. The center 

of gravity of the container is located at G.

uu

A

B C

1.5 m 1.5 m

G

F

Prob. 3–12

3–13. A nuclear-reactor vessel has a weight of 500(103) lb. 

Determine the horizontal compressive force that the 

spreader bar AB exerts on point A and the force that each 

cable segment CA and AD exert on this point while the 

vessel is hoisted upward at constant velocity.

A B

C

D E

30� 30�

Prob. 3–13

3–14. Determine the stretch in each spring for equilibrium 

of the 2-kg block. The springs are shown in the equilibrium 

position.

3–15. The unstretched length of spring AB is 3 m. If the 

block is held in the equilibrium position shown, determine 

the mass of the block at D.

3 m

3 m 4 m

kAD � 40 N/m

kAB � 30 N/m

kAC � 20 N/m

C B

A

D

Probs. 3–14/15

*3–16. Determine the mass of each of the two cylinders if 

they cause a sag of s = 0.5 m when suspended from the rings at  

A and B. Note that s = 0 when the cylinders are removed.

1 m 2 m2 m

1.5 m

s

BA

C D

k � 100 N/m k � 100 N/m

Prob. 3–16
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3–17. Determine the stiffness kT of the single spring such 

that the force F will stretch it by the same amount s as the 

force F stretches the two springs. Express kT in terms of 

stiffness k1 and k2 of the two springs.

s

Unstretched 
position

k1

s
k2

kT

F

F

Prob. 3–17

3–18. If the spring DB has an unstretched length of 2 m, 

determine the stiffness of the spring to hold the 40-kg crate 

in the position shown.

3–19. Determine the unstretched length of DB to hold the 

40-kg crate in the position shown. Take k = 180 N>m.

2 m

2 m 3 m

k

C B

A

D

Probs. 3–18/19

*3–20. A vertical force P = 10 lb is applied to the ends of 

the 2-ft cord AB and spring AC. If the spring has an 

unstretched length of 2 ft, determine the angle u for 

equilibrium. Take k = 15 lb>ft.

3–21. Determine the unstretched length of spring AC if a 

force P = 80 lb causes the angle u = 60° for equilibrium. 

Cord AB is 2 ft long. Take k = 50 lb>ft.

2 ft

k

2 ft

A

B C

P

u

Probs. 3–20/21

3–22. The springs BA and BC each have a stiffness of 

500 N>m and an unstretched length of 3 m. Determine the 

horizontal force F applied to the cord which is attached to 

the small ring B so that the displacement of AB from the 

wall is d = 1.5 m.

3–23. The springs BA and BC each have a stiffness of 

500 N>m and an unstretched length of 3 m. Determine 

the displacement d of the cord from the wall when a 

force F = 175 N is applied to the cord.

F

B

C

d

A

k � 500 N/m

k � 500 N/m

6 m

Probs. 3–22/23
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*3–28. The street-lights at A and B are suspended from 

the two poles as shown. If each light has a weight of 50 lb, 

determine the tension in each of the three supporting cables 

and the required height h of the pole DE so that cable AB is 

horizontal.

D

A
h

B

C

E
24 ft

18 ft

6 ft

10 ft

5 ft

Prob. 3–28

3–29. Determine the tension developed in each cord 

required for equilibrium of the 20-kg lamp.

3–30. Determine the maximum mass of the lamp that the 

cord system can support so that no single cord develops a 

tension exceeding 400 N.

A

B

D

E

F

C

45°

30°
3

4 5

Probs. 3–29/30

*3–24. Determine the distances x and y for equilibrium if 

F1 = 800 N and F2 = 1000 N.

3–25. Determine the magnitude of F1 and the distance y if 

x = 1.5 m and F2 = 1000 N.

B

A

C D
F1

F2

x

2 m

y

Probs. 3–24/25

3–26. The 30-kg pipe is supported at A by a system of five 

cords. Determine the force in each cord for equilibrium.

3–27. Each cord can sustain a maximum tension of 500 N. 

Determine the largest mass of pipe that can be supported.

A

H

E

B

C

D
3

4

5

60�

Probs. 3–26/27
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3–31. Blocks D and E have a mass of 4 kg and 6 kg, 

respectively. If x = 2 m determine the force F and the sag s 

for equilibrium.

*3–32. Blocks D and E have a mass of 4 kg and 6 kg, 

respectively. If F = 80 N, determine the sag s and distance x 

for equilibrium. 

ED

A

CB

6 m

x

F

s

Probs. 3–31/32

3–33. The lamp has a weight of 15 lb and is supported by 

the six cords connected together as shown. Determine the 

tension in each cord and the angle u for equilibrium. Cord 

BC is horizontal.

3–34. Each cord can sustain a maximum tension of 20 lb. 

Determine the largest weight of the lamp that can be 

supported. Also, determine u of cord DC for equilibrium.

E

B C

D

A

30�

45�60�

u

Probs. 3–33/34

3–35. The ring of negligible size is subjected to a vertical 

force of 200 lb. Determine the required length l of cord AC 

such that the tension acting in AC is 160 lb. Also, what is the 

force in cord AB? Hint: Use the equilibrium condition to 

determine the required angle u for attachment, then 

determine l using trigonometry applied to triangle ABC.

40�
BC

A

l 2 ft

200 lb

u

Prob. 3–35

*3–36. Cable ABC  has a length of 5 m. Determine the 

position x and the tension developed in ABC required for 

equilibrium of the 100-kg sack. Neglect the size of the 

pulley at B.

A

B

C

x
3.5 m

0.75 m

Prob. 3–36

3–37. A 4-kg sphere rests on the smooth parabolic surface. 

Determine the normal force it exerts on the surface and the 

mass mB of block B needed to hold it in the equilibrium 

position shown.

B

A

y

x
0.4 m

0.4 m

60�

y � 2.5x2

Prob. 3–37
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3–38. Determine the forces in cables AC and AB needed 

to hold the 20-kg ball D in equilibrium. Take F = 300 N and 

d = 1 m.

3–39. The ball D has a mass of 20 kg. If a force of F = 100 N 

is applied horizontally to the ring at A, determine the 

dimension d so that the force in cable AC is zero.

A

C

B

F

D

2 m

1.5 m

d

Probs. 3–38/39

*3–40. The 200-lb uniform container is suspended by 

means of a 6-ft-long cable, which is attached to the sides of 

the tank and passes over the small pulley located at O. If the 

cable can be attached at either points A and B, or C and D, 

determine which attachment produces the least amount of 

tension in the cable. What is this tension?

A

O

C

1 ft
B

2 ft

F

D

2 ft

2 ft

Prob. 3–40

3–41. The single elastic cord ABC is used to support the 

40-lb load. Determine the position x and the tension in the 

cord that is required for equilibrium. The cord passes 

through the smooth ring at B and has an unstretched length 

of 6ft and stiffness of k =  50 lb>ft. 

A

C

B

x

5 ft

1 ft

Prob. 3–41

3–42. A “scale” is constructed with a 4-ft-long cord and 

the 10-lb block D. The cord is fixed to a pin at A and passes 

over two small pulleys. Determine the weight of the 

suspended block B if the system is in equilibrium when  

s = 1.5 ft.

s � 1.5 ft

D

C

B

A

1 ft

Prob. 3–42
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     CONCEPTUAL PROBLEMS

C3–1. The concrete wall panel is hoisted into position using 

the two cables AB and AC of equal length. Establish 

appropriate dimensions and use an equilibrium analysis to 

show that the longer the cables the less the force in each cable.

A

B C

Prob. C3–1 (© Russell C. Hibbeler)

C3–2. The hoisting cables BA and BC each have a length 

of 20 ft. If the maximum tension that can be supported by 

each cable is 900 lb, determine the maximum distance AC 

between them in order to lift the uniform 1200-lb truss with 

constant velocity.

B

A C ED

Prob. C3–2 (© Russell C. Hibbeler)

C3–3. The device DB is used to pull on the chain ABC to 

hold a door closed on the bin. If the angle between AB and 

BC is 30°, determine the angle between DB and BC for 

equilibrium.

A

C

B

D

Prob. C3–3 (© Russell C. Hibbeler)

C3–4. Chain AB is 1 m long and chain AC is 1.2 m long. If 

the distance BC is 1.5 m, and AB can support a maximum 

force of 2 kN, whereas AC can support a maximum force of 

0.8 kN, determine the largest vertical force F that can be 

applied to the link at A.

F

B

A

C

Prob. C3–4 (© Russell C. Hibbeler)



132  CHAPTER 4  FORCE SYSTEM RESULTANTS

4

4.4 Principle of Moments

A concept often used in mechanics is the principle of moments, which 
is sometimes referred to as Varignon’s theorem since it was orginally 
developed by the French mathematician Pierre Varignon (1654–1722). 
It states that the moment of a force about a point is equal to the sum of 
the moments of the components of the force about the point. This 
theorem can be proven easily using the vector cross product since the 
cross product obeys the distributive law. For example, consider the 
moments of the force F and two of its components about point O, 
Fig. 4–16. Since F = F1 + F2 we have

MO = r * F = r * (F1 + F2) = r * F1 + r * F2

For two-dimensional problems, Fig. 4–17, we can use the principle of 
moments by resolving the force into its rectangular components and 
then determine the moment using a scalar analysis. Thus,

MO = Fx y - Fy x

This method is generally easier than finding the same moment using 
MO = Fd.

F2

O

r

F1F

Fig. 4–16

MO

Fx

FFy

O

d

x

y

Fig. 4–17

Important Points

  The moment of a force creates the tendency of a body to turn 
about an axis passing through a specific point O.

  Using the right-hand rule, the sense of rotation is indicated by the 
curl of the fingers, and the thumb is directed along the moment 
axis, or line of action of the moment.

  The magnitude of the moment is determined from MO = Fd, 
where d is called the moment arm, which represents the 
perpendicular or shortest distance from point O to the line of 
action of the force.

  In three dimensions the vector cross product is used to determine 
the moment, i.e., MO = r * F. Remember that r is directed from 
point O to any point on the line of action of F.

Fy

r

Fx

FO

x

d

y

MO

The moment of the force about point O is 
MO = Fd. But it is easier to find this moment 
using MO = Fx(0) + Fyr = Fyr. (© Russell 
C. Hibbeler)
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4

x

y

(c)

45�

30�

30�
3 m

O

Fx � (5 kN) cos 75�

Fy � (5 kN) sin 75�

Fig. 4–18

Determine the moment of the force in Fig. 4–18a about point O.

EXAMPLE   4.5

30�

(a)

45�

F � 5 kN3 m

O

d
75�

y

x

(b)

30�

45�

O

dy � 3 sin 30� m

dx � 3 cos 30� m
Fx � (5 kN) cos 45�

Fy � (5 kN) sin 45�

SOLUTION I
The moment arm d in Fig. 4–18a can be found from trigonometry.

d = (3 m) sin 75� = 2.898 m

Thus,

 MO = Fd = (5 kN)(2.898 m) = 14.5 kN # mb Ans.

Since the force tends to rotate or orbit clockwise about point O, the 
moment is directed into the page.

SOLUTION II
The x and y components of the force are indicated in Fig. 4–18b. 
Considering counterclockwise moments as positive, and applying the 
principle of moments, we have

 a+  MO = -Fxdy - Fydx

 =  -(5 cos 45� kN)(3 sin 30� m) - (5 sin 45� kN)(3 cos 30� m)

  = -14.5 kN # m = 14.5 kN # m b Ans.

SOLUTION III
The x and y axes can be set parallel and perpendicular to the rod’s 
axis as shown in Fig. 4–18c. Here Fx produces no moment about 
point O since its line of action passes through this point. Therefore,

 a+  MO = -Fy dx

 = -(5 sin 75� kN)(3 m)

 = -14.5 kN # m = 14.5 kN # mb Ans.
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0.4 m

0.2 m

30�

O

F = 400 N
(a)

Force F acts at the end of the angle bracket in Fig. 4–19a. Determine 
the moment of the force about point O.

SOLUTION I (SCALAR ANALYSIS)
The force is resolved into its x and y components, Fig. 4–19b, then

 a+  MO = 400 sin 30� N(0.2 m) - 400 cos 30� N(0.4 m)

 = -98.6 N # m = 98.6 N # m b

or

 MO = {-98.6k} N # m  Ans.

SOLUTION II (VECTOR ANALYSIS)
Using a Cartesian vector approach, the force and position vectors,  
Fig. 4–19c, are

 r = {0.4i - 0.2j} m

 F = {400 sin 30� i - 400 cos 30� j} N

 = {200.0i - 346.4j} N

The moment is therefore

 MO = r * F = 3 i j k
0.4  -0.2 0

200.0  -346.4 0

3
 = 0i - 0j + [0.4(-346.4) - (-0.2)(200.0)]k

 = {-98.6k} N # m  Ans.

NOTE: It is seen that the scalar analysis (Solution I) provides a more 
convenient method for analysis than Solution II since the direction of 
the moment and the moment arm for each component force are easy 
to establish. Hence, this method is generally recommended for solving 
problems displayed in two dimensions, whereas a Cartesian vector 
analysis is generally recommended only for solving three-dimensional 
problems.

EXAMPLE   4.6

Fig. 4–19

0.4 m

0.2 m

(b)

400 cos 30� N

400 sin 30� N

O

y

y

x

0.4 m

0.2 m

30�

O

F(c)

r
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P4–2. In each case, set up the determinant to find the 
moment of the force about point P.

P4–1. In each case, determine the moment of the force 
about point O.

3 m 2 m

100 N

(a)

O

Prob. P4–1

(a)

y
P2 m

3 m

z

x

F � {�3i � 2j � 5k} kN

Prob. P4–2

PRELIMINARY PROBLEMS

100 N

O

1 m 3 m

(b)

5 m3
4

5

100 N

(e)

O

(h)

1 m

O
500 N

3 m

4
3

1 m

5

2 m

O
3

4

5

500 N

(c)

2 m 3 m

100 N

(f)

O

(i)

O

500 N

4
3 5

1 m

2 m

1 m

2 m 3 m

3
4 5

500 N

(d)

O

(g)

1 m

2 m3
4

5

500 N

O

(b)

y
P

2 m2 m

1 m

3 m

z

x

F � {2i � 4j � 3k} kN

(c)

y

P

1 m
2 m

2 m

2 m

3 m

4 m

z

x

F � {�2i � 3j � 4k} kN
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FUNDAMENTAL PROBLEMS

F4–1.  Determine the moment of the force about point O.

5 m

2 m

100 N
3

4

5

O

Prob. F4–1

F4–2.  Determine the moment of the force about point O.

30�

45�

F � 300 N

0.4 m

0.3 m
O

Prob. F4–2

F4–3.  Determine the moment of the force about point O.

4 ft

3 ft

1 ft

600 lb

O

45�

Prob. F4–3

F4–4.  Determine the moment of the force about point O. 
Neglect the thickness of the member.

50 N

60�

45�

100 mm

100 mm

200 mm
O

Prob. F4–4

F4–5.  Determine the moment of the force about point O.

5 ft

0.5 ft

600 lb

20�

30�

O

Prob. F4–5

F4–6.  Determine the moment of the force about point O.

500 N

3 m

O

45�

Prob. F4–6
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F4–10. Determine the moment of force F about point O. 
Express the result as a Cartesian vector.

x

z

y

O

A
B

4 m
3 m

F � 500 N

Prob. F4–10

F4–11. Determine the moment of force F about point O. 
Express the result as a Cartesian vector.

x

z

y

O

A

B

C 2 ft

1 ft

4 ft

4 ft

F � 120 lb

Prob. F4–11

F4–12. If the two forces F1 = {100i -  120j + 75k} lb and  
F2 = { -200i  +  250j + 100k} lb act at A, determine the 
resultant moment produced by these forces about point O. 
Express the result as a Cartesian vector.

z

O

A

x

y

4 ft

3 ft 5 ft

F1

F2

Prob. F4–12

F4–7.  Determine the resultant moment produced by the 
forces about point O.

O

2 m

2.5 m45�

1 m

600 N

 300 N

 500 N

Prob. F4–7

F4–8.  Determine the resultant moment produced by the 
forces about point O.

F1 � 500 N

F2 � 600 N

A

0.25 m

0.3 m
0.125 m

60�

4
35

O

Prob. F4–8

F4–9.  Determine the resultant moment produced by the 
forces about point O.

O

30�30�

6 ft

6 ft

F2 � 200 lb

F1 � 300 lb

Prob. F4–9
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4–1. If A, B, and D are given vectors, prove the 
distributive law for the vector cross product, i.e., 
A * (B + D) = (A * B) + (A * D).

4–2.  Prove the triple scalar product identity 
A # (B * C) = (A * B) # C.

4–3.  Given the three nonzero vectors A, B, and C, show 
that if A # (B * C) = 0, the three vectors must lie in the 
same plane.

*4–4.  Determine the moment about point A of each of the 
three forces acting on the beam.

4–5.  Determine the moment about point B of each of the 
three forces acting on the beam.

F2 � 500 lbF1 � 375 lb

F3 � 160 lb

4

3

5

8 ft 6 ft

0.5 ft

30�

5 ft

BA

Probs. 4–4/5

4–6. The crowbar is subjected to a vertical force of P = 25 lb 
at the grip, whereas it takes a force of F = 155 lb at the claw to 
pull the nail out. Find the moment of each force about point A 
and determine if P is sufficient to pull out the nail. The crowbar 
contacts the board at point A.

20�

3 in.

1.5 in.

60�

O

A

F

P
14 in.

Prob. 4–6

4–7.  Determine the moment of each of the three forces 
about point A.

*4–8.  Determine the moment of each of the three forces 
about point B.

2 m 3 m

4 m

60�

30�F1 � 250 N

B

F2 � 300 N

F3 � 500 N

A

4
3

5

Probs. 4–7/8

4–9.  Determine the moment of each force about the bolt 
located at A. Take FB = 40 lb, FC = 50 lb.

4–10.  If FB = 30 lb and FC = 45 lb, determine the 
resultant moment about the bolt located at A.

20�

2.5 ft

A
FB

FC

0.75 ft

30�
B

C

25�

Probs. 4–9/10

PROBLEMS
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4

4–15.  Two men exert forces of F = 80 lb and P = 50 lb on 
the ropes. Determine the moment of each force about A. 
Which way will the pole rotate, clockwise or counterclockwise?

*4–16.  If the man at B exerts a force of P = 30 lb on his 
rope, determine the magnitude of the force F the man at C 
must exert to prevent the pole from rotating, i.e., so the 
resultant moment about A of both forces is zero.

A

P

F

B

C

6 ft

45�

12 ft
3

4

5

Probs. 4–15/16

4–17.  The torque wrench ABC is used to measure the 
moment or torque applied to a bolt when the bolt is located 
at A and a force is applied to the handle at C. The mechanic 
reads the torque on the scale at B. If an extension AO of 
length d is used on the wrench, determine the required scale 
reading if the desired torque on the bolt at O is to be M.

A

F

B

Cd l
O

M

Prob. 4–17

4–11.  The towline exerts a force of P = 6 kN at the end of 
the 8-m-long crane boom. If u = 30�, determine the 
placement x of the hook at B so that this force creates a 
maximum moment about point O. What is this moment?

*4–12.  The towline exerts a force of P = 6 kN at the end 
of the 8-m-long crane boom. If x = 10 m, determine the 
position u of the boom so that this force creates a maximum 
moment about point O. What is this moment?

1 m

O

8 m

A

B

P � 6 kN

u

x

Probs. 4–11/12

4–13.  The 20-N horizontal force acts on the handle of the 
socket wrench. What is the moment of this force about point B. 
Specify the coordinate direction angles a, b, g of the moment 
axis.

4–14.  The 20-N horizontal force acts on the handle of the 
socket wrench. Determine the moment of this force about 
point O. Specify the coordinate direction angles a, b, g of 
the moment axis.

O

x

z

B A

y

50 mm

200 mm

10 mm

20 N

60�

Probs. 4–13/14
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4–22. Old clocks were constructed using a fusee B to drive 
the gears and watch hands. The purpose of the fusee is to 
increase the leverage developed by the mainspring A as it 
uncoils and thereby loses some of its tension. The 
mainspring can develop a torque (moment) Ts = ku, where 
k = 0.015 N # m/rad is the torsional stiffness and u is the 
angle of twist of the spring in radians. If the torque Tf 
developed by the fusee is to remain constant as the 
mainspring winds down, and x = 10 mm when u = 4 rad, 
determine the required radius of the fusee when u = 3 rad.

Tf

A

Ts

y

x

y

t

B

12 mm

x

Prob. 4–22
4–23.  The tower crane is used to hoist the 2-Mg load upward 
at constant velocity. The 1.5-Mg jib BD, 0.5-Mg jib BC, and 
6-Mg counterweight C have centers of mass at G1, G2, and G3, 
respectively. Determine the resultant moment produced by 
the load and the weights of the tower crane jibs about point A 
and about point B.

*4–24. The tower crane is used to hoist a 2-Mg load upward 
at constant velocity. The 1.5-Mg jib BD and 0.5-Mg jib BC 
have centers of mass at G1 and G2, respectively. Determine 
the required mass of the counterweight C so that the resultant 
moment produced by the load and the weight of the tower 
crane jibs about point A is zero. The center of mass for the 
counterweight is located at G3.

C
B D

G2

G3

A

9.5m

7.5 m

4 m

G112.5 m

23 m

Probs. 4–23/24

4–18.  The tongs are used to grip the ends of the drilling pipe P. 
Determine the torque (moment) MP that the applied force 
F = 150 lb exerts on the pipe about point P as a function of u. 
Plot this moment MP versus u for 0 …  u …  90°.

4–19.  The tongs are used to grip the ends of the drilling 
pipe P. If a torque (moment) of MP = 800 lb # ft is needed 
at P to turn the pipe, determine the cable force F that must 
be applied to the tongs. Set u = 30°.

43 in.

P

MP

6 in. 

F

u

Probs. 4–18/19

*4–20.  The handle of the hammer is subjected to the force 
of F = 20 lb. Determine the moment of this force about the 
point A.

4–21.  In order to pull out the nail at B, the force F exerted 
on the handle of the hammer must produce a clockwise 
moment of 500 lb # in. about point A. Determine the 
required magnitude of force F.

F

B

A

18 in.

5 in.

30�

Probs. 4–20/21



Force System 
Resultants

CHAPTER OBJECTIVES

■ To discuss the concept of the moment of a force and show how 
to calculate it in two and three dimensions.

■ To provide a method for finding the moment of a force about a 
specified axis.

■ To define the moment of a couple.

■ To show how to find the resultant effect of a nonconcurrent 
force system.

■ To indicate how to reduce a simple distributed loading to a 
resultant force acting at a specified location.

4.1  Moment of a Force—
Scalar Formulation

When a force is applied to a body it will produce a tendency for the body 
to rotate about a point that is not on the line of action of the force. This 
tendency to rotate is sometimes called a torque, but most often it is called 
the moment of a force or simply the moment. For example, consider a 
wrench used to unscrew the bolt in Fig. 4–1a. If a force is applied to 
the handle of the wrench it will tend to turn the bolt about point O (or 
the z axis). The magnitude of the moment is directly proportional to the 
magnitude of F and the perpendicular distance or moment arm d. The 
larger the force or the longer the moment arm, the greater the moment 
or turning effect. Note that if the force F is applied at an angle u � 90�, 
Fig. 4–1b, then it will be more difficult to turn the bolt since the moment 
arm d� = d sin u will be smaller than d. If F is applied along the wrench, 
Fig. 4–1c, its moment arm will be zero since the line of action of F will 
intersect point O (the z axis). As a result, the moment of F about O is also 
zero and no turning can occur.

z

O

(c)

F

Fig. 4–1

z

O

F

d¿ � d sin u

(b)

u

d

z

O d

F

(a)
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We can generalize the above discussion and consider the force F and 
point O which lie in the shaded plane as shown in Fig. 4–2a. The moment 
MO about point O, or about an axis passing through O and perpendicular 
to the plane, is a vector quantity since it has a specified magnitude and 
direction.

Magnitude. The magnitude of MO is

 MO = Fd  (4–1)

where d is the moment arm or perpendicular distance from the axis at 
point O to the line of action of the force. Units of moment magnitude 
consist of force times distance, e.g., N # m or lb # ft.

Direction. The direction of MO is defined by its moment axis, which 
is perpendicular to the plane that contains the force F and its moment 
arm d. The right-hand rule is used to establish the sense of direction of 
MO. According to this rule, the natural curl of the fingers of the right 
hand, as they are drawn towards the palm, represent the rotation, or if no 
movement is possible, there is a tendency for rotation caused by the 
moment. As this action is performed, the thumb of the right hand will 
give the directional sense of MO, Fig. 4–2a. Notice that the moment vector 
is represented three-dimensionally by a curl around an arrow. In two 
dimensions this vector is represented only by the curl as in Fig. 4–2b. 
Since in this case the moment will tend to cause a counterclockwise 
rotation, the moment vector is actually directed out of the page.

Resultant Moment. For two-dimensional problems, where all the 
forces lie within the x–y plane, Fig. 4–3, the resultant moment (MR )O 

  
about point O (the z axis) can be determined by finding the algebraic sum 
of the moments caused by all the forces in the system. As a convention, 
we will generally consider positive moments as counterclockwise since 
they are directed along the positive z axis (out of the page). Clockwise 
moments will be negative. Doing this, the directional sense of each 
moment can be represented by a plus or minus sign. Using this sign 
convention, with a symbolic curl to define the positive direction, the 
resultant moment in Fig. 4–3 is therefore

 a+(MR)
O

= �Fd;  (MR)
O

= F1d1 - F2d2 + F3d3

If the numerical result of this sum is a positive scalar, (MR )
O
 will be a 

counterclockwise moment (out of the page); and if the result is negative, 
(MR )

O
 will be a clockwise moment (into the page).

Sense of rotation

O

Moment axis

d
F

MO

MO

F

d

O

(a)

(b)

Fig. 4–2

y

x
O

F3

F2

F1

M3

M2 M1

d3

d2
d1

Fig. 4–3
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EXAMPLE   4.1

For each case illustrated in Fig. 4–4, determine the moment of the 
force about point O.

SOLUTION (SCALAR ANALYSIS)
The line of action of each force is extended as a dashed line in order to 
establish the moment arm d. Also illustrated is the tendency of 
rotation of the member as caused by the force. Furthermore, the orbit 
of the force about O is shown as a colored curl. Thus,

Fig. 4–4a  MO = (100 N)(2 m) = 200 N # m b Ans.

Fig. 4–4b  MO = (50 N)(0.75 m) = 37.5 N # mb Ans.

Fig. 4–4c  MO = (40 lb)(4 ft + 2 cos 30� ft) = 229 lb # ft b Ans.

Fig. 4–4d  MO = (60 lb)(1 sin 45� ft) = 42.4 lb # ft d Ans.

Fig. 4–4e  MO = (7 kN)(4 m - 1 m) = 21.0 kN # m d Ans.

2 m

O

(a)

100 N

Fig. 4–4

2 m

O

(b)

50 N

0.75 m

2 ft

(c)

O

4 ft
2 cos 30� ft

40 lb30�

(d)

O
1 sin 45� ft

60 lb

3 ft

45�
1 ft

2 m

O (e)

4 m

1 m
7 kN
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Determine the resultant moment of the four forces acting on the rod 
shown in Fig. 4–5 about point O.

SOLUTION
Assuming that positive moments act in the +  k direction, i.e., 
counterclockwise, we have

 a + (MR)
O

= �Fd;

 (MR)
O

= -50 N(2 m) + 60 N(0) + 20 N(3 sin 30� m)

 -40 N(4 m + 3 cos 30� m)

 (MR)
O

= -334 N # m = 334 N # mb  Ans.

For this calculation, note how the moment-arm distances for the 20-N 
and 40-N forces are established from the extended (dashed) lines of 
action of each of these forces.

EXAMPLE   4.2

50 N

40 N

20 N3 m

2 m 2 m

O

x

y

60 N

30�

Fig. 4–5

FN

FH

O

The ability to remove the nail will require the 
moment of FH about point O to be larger than the 
moment of the force FN about O that is needed to 
pull the nail out. (© Russell C. Hibbeler)

MA � FdA

dA

F

A B

As illustrated by the example problems, the moment of a 
force does not always cause a rotation. For example, the force 
F tends to rotate the beam clockwise about its support at A 
with a moment MA = FdA. The actual rotation would occur 
if the support at B were removed. (© Russell C. Hibbeler)
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P4–5. In each case, determine the x and y components of 
the resultant force and the resultant couple moment at 
point O.

400 N500 N

200 N
O

2 m 2 m2 m

(a)

3
4

5

300 N
500 N

200 N � m

2 m 2 m

(b)

3
4

5

O

500 N

100 N

500 N

O

2 m 2 m 2 m

(c)

3

4
5

3
4

5 3

4

500 N
500 N

O

2 m

2 m

(d)

2 m

5

200 N � m

PRELIMINARY PROBLEM

Prob. P4–5
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PROBLEMS

4

F4–25. Replace the loading system by an equivalent 
resultant force and couple moment acting at point A.

A

3 ft 3 ft

4 ft

150 lb

200 lb

100 lb

Prob. F4–25

F4–26. Replace the loading system by an equivalent 
resultant force and couple moment acting at point A.

3
4

5

50 N

200 N � m

30 N
40 N

A
B

3 m 3 m

Prob. F4–26

F4–27. Replace the loading system by an equivalent 
resultant force and couple moment acting at point A.

900 N 30�

300 N�m

0.75 m 0.75 m 0.75 m 0.75 m

A

300 N

Prob. F4–27

F4–28. Replace the loading system by an equivalent 
resultant force and couple moment acting at point A.

50 lb

100 lb

4
35

A

4
3

5

150 lb

3 ft 3 ft

1 ft

Prob. F4–28

F4–29. Replace the loading system by an equivalent 
resultant force and couple moment acting at point O.

x

z

y

O

A

B

2 m1 m
1.5 m

F1 � {�300i � 150j � 200k} N

F2 � {�450k} N

Prob. F4–29

F4–30. Replace the loading system by an equivalent 
resultant force and couple moment acting at point O.

0.5 m 0.4 m

z

y

x

F2 � 200 N

F1 � 100 N

0.3 m

Mc � 75 N�m

O

Prob. F4–30

FUNDAMENTAL PROBLEMS
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FUNDAMENTAL PROBLEMS

4

4–97. Replace the force system by an equivalent resultant 
force and couple moment at point O.

4–98. Replace the force system by an equivalent resultant 
force and couple moment at point P.

y

x
O

600 N

60�

2.5 m 2 m

0.75 m0.75 m

1 m

5
12

13

455 N

P

Probs. 4–97/98

4–99. Replace the force system acting on the beam by an 
equivalent force and couple moment at point A.

*4–100. Replace the force system acting on the beam by 
an equivalent force and couple moment at point B.

2.5 kN 1.5 kN

3 kN

A B

4 m

3
4

5

2 m 2 m

30�

Probs. 4–99/100

4–101. Replace the loading system acting on the beam by 
an equivalent resultant force and couple moment at point O.

30�

y

x

450 N

O

200 N

0.2 m 200 N  � m

2 m1.5 m 1.5 m

Prob. 4–101

4–102. Replace the loading system acting on the post by an 
equivalent resultant force and couple moment at point A.

4–103. Replace the loading system acting on the post by an 
equivalent resultant force and couple moment at point B.

3 m

500 N
30�

60�1500 N � m

5 m 2 m

650 N
300 N

BA

Probs. 4–102/103

PROBLEMS
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4

4–106. The forces F1 = {-4i + 2j - 3k} kN and F2 =   
{3i - 4j - 2k} kN act on the end of the beam. Replace 
these forces by an equivalent force and couple moment 
acting at point O.

y

z

x

F1 150 mm
150 mm

F2

250 mm
O

4 m

Prob. 4–106

4–107. A biomechanical model of the lumbar region of 
the human trunk is shown. The forces acting in the four 
muscle groups consist of FR = 35 N for the rectus, 
FO = 45 N for the oblique, FL = 23 N for the lumbar 
latissimus dorsi, and FE = 32 N for the erector spinae. These 
loadings are symmetric with respect to the y–z plane. 
Replace this system of parallel forces by an equivalent force 
and couple moment acting at the spine, point O. Express the 
results in Cartesian vector form.

75 mm

45 mm 50 mm 40 mm
30 mm

15 mm

z

x y

FR

FO FL

FE

FR

FE FL

FO

O

Prob. 4–107

*4–104. Replace the force system acting on the post by a 
resultant force and couple moment at point O.

O

150 lb

300 lb

200 lb

3
4

5

2 ft

2 ft

2 ft

30�

Prob. 4–104

4–105. Replace the force system acting on the frame by an 
equivalent resultant force and couple moment acting at 
point A.

1 m

0.5 m 0.3 m

0.5 m

500 N

300 N

400 N

A

30�

Prob. 4–105
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4

Replace the force and couple moment system acting on the beam in 
Fig. 4–44a by an equivalent resultant force, and find where its line of 
action intersects the beam, measured from point O.

(b)

d

O

FR

(FR)x � 4.80 kN(FR)y � 2.40 kN
u

(a)

O

4 kN

15 kN�m

8 kN

3
45

1.5 m 1.5 m 1.5 m 1.5 m

0.5 m

y

x

Fig. 4–44

SOLUTION

Force Summation. Summing the force components,

S+ (FR)x = �Fx;  (FR)x =  8 kN13
52 = 4.80 kN S

+ c (FR)y = �Fy;  (FR)y = -4 kN + 8 kN14
52 = 2.40 kNc

From Fig. 4–44b, the magnitude of FR is

  FR = 2(4.80 kN)2 + (2.40 kN)2 = 5.37 kN Ans.

The angle u is

  u = tan-1¢ 2.40 kN

4.80 kN
≤ = 26.6� Ans.

Moment Summation. We must equate the moment of FR about 
point O in Fig. 4–44b to the sum of the moments of the force and 
couple moment system about point O in Fig. 4–44a. Since the line of 
action of (FR)x acts through point O, only (FR)y produces a moment 
about this point. Thus,

a+  (MR)O = �MO;   2.40 kN(d) = -(4 kN)(1.5 m) - 15 kN # m
- 38 kN13

52 4 (0.5 m) + 38 kN14
52 4 (4.5 m)

 d = 2.25 m Ans.

EXAMPLE   4.17
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4

S+ (FR)
x

= �Fx; (FR)
x

= -250 lb13
52 -  175 lb = -325 lb = 325 lb d

+ c (FR)
y

= �Fy; (FR)
y

= -250 lb14
52 -  60 lb = -260 lb = 260 lbT

The jib crane shown in Fig. 4–45a is subjected to three coplanar forces. 
Replace this loading by an equivalent resultant force and specify 
where the resultant’s line of action intersects the column AB and 
boom BC.

SOLUTION
Force Summation. Resolving the 250-lb force into x and y 
components and summing the force components yields

6 ft

y

x

5 ft

175 lb
60 lb

(a)

250 lb

5 4
3

3 ft 5 ft 3 ft

B
C

A

y

(b)

x

x

FR

FR

y

C

A

260 lb

325 lb

260 lb

325 lb
B

u

Fig. 4–45

EXAMPLE   4.18

As shown by the vector addition in Fig. 4–45b,

  FR = 2(325 lb)2 + (260 lb)2 = 416 lb Ans.

  u = tan-1¢ 260 lb

325 lb
≤ = 38.7� d Ans.

Moment Summation. Moments will be summed about point A. 
Assuming the line of action of FR intersects AB at a distance y from A, 
Fig. 4–45b, we have

a + (MR)
A

= �MA; 325 lb (y) + 260 lb (0)

= 175 lb (5 ft) - 60 lb (3 ft) + 250 lb13
52(11 ft) - 250 lb14

52(8 ft)

 y = 2.29 ft  Ans.

By the principle of transmissibility, FR can be placed at a distance x 
where it intersects BC, Fig. 4–45b. In this case we have

a + (MR)
A

= �MA; 325 lb (11 ft) - 260 lb (x)

= 175 lb (5 ft) - 60 lb (3 ft) + 250 lb13
52(11 ft) - 250 lb14

52(8 ft) 

 x = 10.9 ft  Ans.



EXAMPLE  4.1
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4

The slab in Fig. 4–46a is subjected to four parallel forces. Determine 
the magnitude and direction of a resultant force equivalent to the 
given force system, and locate its point of application on the slab.

y

x

O

FR

z

�

�

(b)

x
P(x, y)

y

y

x

B
2 m

O

600 N

500 N

z

100 N
5 m 5 m

400 N

C

8 m

�

�

(a)
Fig. 4–46

SOLUTION (SCALAR ANALYSIS)
Force Summation. From Fig. 4–46a, the resultant force is

+ cFR = �F;  FR = -600 N + 100 N - 400 N - 500 N

  = -1400 N = 1400 NT  Ans.

Moment Summation. We require the moment about the x axis of 
the resultant force, Fig. 4–46b, to be equal to the sum of the moments 
about the x axis of all the forces in the system, Fig. 4–46a. The moment 
arms are determined from the y coordinates, since these coordinates 
represent the perpendicular distances from the x axis to the lines of 
action of the forces. Using the right-hand rule, we have

(MR)x = �Mx;

-(1400 N)y = 600 N(0) + 100 N(5 m) - 400 N(10 m) + 500 N(0)

 -1400y = -3500   y = 2.50 m Ans.

In a similar manner, a moment equation can be written about the  
y axis using moment arms defined by the x coordinates of each force.

(MR)y = �My;

 (1400 N)x = 600 N(8 m) - 100 N(6 m) + 400 N(0) + 500 N(0)

 1400x = 4200

 x = 3 m Ans.

NOTE: A force of FR = 1400 N placed at point P(3.00 m, 2.50 m) on 
the slab, Fig. 4–46b, is therefore equivalent to the parallel force system 
acting on the slab in Fig. 4–46a.

EXAMPLE   4.19



EXAMPLE  4.1
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4

Replace the force system in Fig. 4–47a by an equivalent resultant 
force and specify its point of application on the pedestal.

SOLUTION
Force Summation. Here we will demonstrate a vector analysis. 
Summing forces,

FR = �F;  FR = FA + FB + FC

  = {-300k} lb + {-500k} lb + {100k} lb

  = {-700k} lb  Ans.

Location. Moments will be summed about point O. The resultant 
force FR is assumed to act through point P (x, y, 0), Fig. 4–47b. Thus

(MR)O = �MO;

rP * FR = (rA * FA) + (rB * FB) + (rC * FC)

(xi + yj) * ( -700k) = [(4i) * (-300k)] 

+ [(-4i + 2j) * (-500k)] + [(-4j) * (100k)]

-700x(i * k) - 700y (j * k) = -1200(i * k) + 2000(i * k)

- 1000( j * k) - 400( j * k)

  700xj - 700yi = 1200j - 2000j - 1000i - 400i

Equating the i and j components,

 -700y = -1400  (1)

 y = 2 in.  Ans.

 700x = -800  (2)

 x = -1.14 in.  Ans.

The negative sign indicates that the x coordinate of point P is 
negative.

NOTE: It is also possible to establish Eq. 1 and 2 directly by summing 
moments about the x and y axes. Using the right-hand rule, we have

(MR)x = �Mx;  -700y = -100 lb(4 in.) - 500 lb(2 in.)

(MR)y = �My;  700x = 300 lb(4 in.) - 500 lb(4 in.)

x y

z

(a)

FB � 500 lb
FA � 300 lb

FC � 100 lb 2 in.

4 in.4 in.

4 in.

B
O

A

C

rB

rA

rC

x y

z

(b)

FR � {�700k} lb

rP

O

P
y

x

Fig. 4–47

EXAMPLE   4.20
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4

P4–6. In each case, determine the x and y components of 
the resultant force and specify the distance where this force 
acts from point O.

200 N
260 N

O

(a)

2 m 2 m 2 m

(b)

400 N
500 N

O

2 m 2 m

5

3

4

(c)

O

2 m 2 m 2 m

5

500 N

3
4

500 N

3
4

5
600 N � m

Prob. P4–6

P4–7. In each case, determine the resultant force and 
specify its coordinates x and y where it acts on the x–y plane.

z

y

x

200 N 

100 N 

2 m 

2 m 

200 N 

(a)

1 m 

1 m 

z

y

x

100 N 

200 N 

2 m 

2 m 

100 N 

(b)

1 m 

z

y

x

200 N 
400 N 

4 m 

100 N 

(c)

2 m 

2 m 

300 N 

Prob. P4–7

PRELIMINARY PROBLEMS
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4

F4–31. Replace the loading system by an equivalent 
resultant force and specify where the resultant’s line of 
action intersects the beam measured from O.

500 lb 500 lb
250 lb

O x

y

3 ft 3 ft 3 ft 3 ft  Prob. F4–31

F4–32. Replace the loading system by an equivalent 
resultant force and specify where the resultant’s line of 
action intersects the member measured from A.

30�

200 lb

50 lb

100 lb

3 ft 3 ft 3 ft

4
3

5

A
4

4
9

5

4
4
9
5

F4–33. Replace the loading system by an equivalent 
resultant force and specify where the resultant’s line of 
action intersects the horizontal segment of the member 
measured from A.

2 m 2 m 2 m
2 m

A
B

20 kN

15 kN

4
3

5

F4–34. Replace the loading system by an equivalent 
resultant force and specify where the resultant’s line of 
action intersects the member AB measured from A.

A

5 kN
6 kN

8 kN
4

3

5

1.5 m

3 m

0.5 m

0.5 m

0.5 m B

y

x
 Prob. F4–34

F4–35. Replace the loading shown by an equivalent single 
resultant force and specify the x and y coordinates of its 
line of action.

z

x

y

100 N

400 N

500 N

4 m

4 m
3 m

 Prob. F4–35

F4–36. Replace the loading shown by an equivalent single 
resultant force and specify the x and y coordinates of its 
line of action.

2 m

3 m2 m

3 m

3 m

1 m

1 m

z

y

x

200 N

200 N

100 N
100 N

FUNDAMENTAL PROBLEMS

Prob. F4–32

Prob. F4–33
Prob. F4–36
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4

4–117. Replace the loading acting on the beam by a single 
resultant force. Specify where the force acts, measured  
from end A.

4–118. Replace the loading acting on the beam by a  
single resultant force. Specify where the force acts, 
measured from B.

2 m

300 N 30�

60�

1500 N�m
4 m 3 m

450 N
700 N

A
B

Probs. 4–117/118

4–119. Replace the loading on the frame by a single 
resultant force. Specify where its line of action intersects a 
vertical line along member AB, measured from A.

1.5 m

0.5 m 0.5 m

200 N200 N
400 N

600 N

A

B

C

Prob. 4–119

4–113. The weights of the various components of the truck 
are shown. Replace this system of forces by an equivalent 
resultant force and specify its location measured from B.

4–114. The weights of the various components of the truck 
are shown. Replace this system of forces by an equivalent 
resultant force and specify its location measured from  
point A.

14 ft 6 ft
2 ft3 ft

AB 3500 lb 5500 lb 1750 lb

Probs. 4–113/114

4–115. Replace the three forces acting on the shaft by a 
single resultant force. Specify where the force acts, measured 
from end A.

*4–116. Replace the three forces acting on the shaft by a 
single resultant force. Specify where the force acts, measured 
from end B.

200 lb

3
4

5

500 lb
260 lb

5

12 13

A B

5 ft 3 ft 2 ft 4 ft

Probs. 4–115/116

PROBLEMS
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4

*4–124. Replace the parallel force system acting on the 
plate by a resultant force and specify its location on the  
x-z plane.

1 m

1 m

1 m

0.5 m

0.5 m

5 kN

3 kN

x

y

z

2 kN

Prob. 4–124

4–125. Replace the force and couple system acting on the 
frame by an equivalent resultant force and specify where 
the resultant’s line of action intersects member AB, 
measured from A.

4–126. Replace the force and couple system acting on the 
frame by an equivalent resultant force and specify where 
the resultant’s line of action intersects member BC, 
measured from B.

3 ft
30�

4 ft

35

4

2 ft

150 lb

50 lb

500 lb � ft

C B

A

Probs. 4–125/126

*4–120. Replace the loading on the frame by a single 
resultant force. Specify where its line of action intersects a 
vertical line along member AB, measured from A.

4–121. Replace the loading on the frame by a single 
resultant force. Specify where its line of action intersects a 
horizontal line along member CB, measured from end C.

1 m

B

A

y

0.5 m
1 m

0.5 m

400 N

600 N

5
4

3

400 N

900 N

1.5 m

x

5

4
3

Probs. 4–120/121

4–122. Replace the force system acting on the post by a 
resultant force, and specify where its line of action intersects 
the post AB measured from point A.

4–123. Replace the force system acting on the post by a 
resultant force, and specify where its line of action intersects 
the post AB measured from point B.

250 N
500 N

0.2 m

0.5 m

3
4

5

300 N

1 m

30�

1 m

1 m

A

B

Probs. 4–122/123
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4

4.9  Reduction of a Simple Distributed 
Loading

Sometimes, a body may be subjected to a loading that is distributed over 
its surface. For example, the pressure of the wind on the face of a sign, the 
pressure of water within a tank, or the weight of sand on the floor of a 
storage container, are all distributed loadings. The pressure exerted at 
each point on the surface indicates the intensity of the loading. It is 
measured using pascals Pa (or N>m2) in SI units or lb>ft2 in the  
U.S. Customary system.

Loading Along a Single Axis. The most common type of 
distributed loading encountered in engineering practice can be 
represented along a single axis.* For example, consider the beam (or 
plate) in Fig. 4–48a that has a constant width and is subjected to a 
pressure loading that varies only along the x axis. This loading can be 
described by the function p = p(x ) N>m2. It contains only one variable 
x, and for this reason, we can also represent it as a coplanar distributed 
load. To do so, we multiply the loading function by the width b m of 
the beam, so that w (x ) = p(x )b N>m, Fig. 4–48b. Using the methods of 
Sec. 4.8, we can replace this coplanar parallel force system with a single 
equivalent resultant force FR acting at a specific location on the beam, 
Fig. 4–48c.

Magnitude of Resultant Force. From Eq. 4–17 (FR = �F ), the 
magnitude of FR is equivalent to the sum of all the forces in the system. 
In this case integration must be used since there is an infinite number of 
parallel forces dF acting on the beam, Fig. 4–48b. Since dF is acting on an 
element of length dx, and w(x) is a force per unit length, then 
dF = w(x) dx = dA . In other words, the magnitude of dF is determined 
from the colored differential area dA under the loading curve. For the 
entire length L,

+ TFR = �F; FR = LL
w(x) dx = LA

dA = A  (4–19)

Therefore, the magnitude of the resultant force is equal to the area A under 
the loading diagram, Fig. 4–48c.

*The more general case of a surface loading acting on a body is considered in Sec. 9.5.

x

w

O

C A

L
x

FR

(c)

Fig. 4–48

p

L

p � p(x)

x

(a)

C

x

FR

b

x

w

O

L
x

dx

dF � dA
w � w(x)

(b)
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4

Location of Resultant Force. Applying Eq. 4–17 (MRO
= �MO), 

the location x of the line of action of FR can be determined by equating 
the moments of the force resultant and the parallel force distribution 
about point O (the y axis). Since dF produces a moment of x dF = xw(x) dx 
about O, Fig. 4–48b, then for the entire length, Fig. 4–48c,

a+  (MR)O = �MO; -xFR = - LL
xw(x) dx

Solving for x, using Eq. 4–19, we have

 x = LL
xw(x) dx

LL
w(x) dx

= LA
x dA

LA
 dA

 (4–20)

This coordinate x, locates the geometric center or centroid of the area 
under the distributed loading. In other words, the resultant force has a line 
of action which passes through the centroid C (geometric center) of the area 
under the loading diagram, Fig. 4–48c. Detailed treatment of the integration 
techniques for finding the location of the centroid for areas is given in 
Chapter 9. In many cases, however, the distributed-loading diagram is in 
the shape of a rectangle, triangle, or some other simple geometric form. 
The centroid location for such common shapes does not have to be 
determined from the above equation but can be obtained directly from the 
tabulation given on the inside back cover.

Once x is determined, FR by symmetry passes through point (x, 0) on the 
surface of the beam, Fig. 4–48a. Therefore, in this case the resultant force has a 
magnitude equal to the volume under the loading curve p = p(x) and a line of 
action which passes through the centroid (geometric center) of this volume.

Important Points

  Coplanar distributed loadings are defined by using a loading 
function w = w(x) that indicates the intensity of the loading 
along the length of a member. This intensity is measured in N>m 
or lb>ft.

  The external effects caused by a coplanar distributed load acting 
on a body can be represented by a single resultant force.

  This resultant force is equivalent to the area under the loading 
diagram, and has a line of action that passes through the centroid 
or geometric center of this area. The pile of brick creates an approximate 

triangular distributed loading on the board. 
(© Russell C. Hibbeler)

x

w

O

C A

L
x

FR

(c)

Fig. 4–48 (Repeated)

x

w

O

L
x

dx

dF � dA
w � w(x)

(b)

p

L

p � p(x)

x

(a)

C

x

FR

b
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4

Determine the magnitude and location of the equivalent resultant 
force acting on the shaft in Fig. 4–49a.

SOLUTION
Since w = w(x) is given, this problem will be solved by integration.

The differential element has an area dA = w dx = 60x2 dx. Applying 
Eq. 4–19,

+ TFR = �F;

 FR = LA
 dA = L

2 m

0
60x2 dx = 60a x3

3
b 2

0

2 m

= 60a 23

3
-

03

3
b

 = 160 N  Ans.

The location x of FR measured from O, Fig. 4–49b, is determined from 
Eq. 4–20.

x = LA
x dA

LA
 dA

= L
2 m 

0
x(60x2) dx

160 N
=

60¢ x4

4
≤ 2

0

2 m

160 N
=

60¢ 24

4
-

04

4
≤

160 N

= 1.5 m Ans.

NOTE: These results can be checked by using the table on the inside 
back cover, where it is shown that the formula for an exparabolic area 
of length a, height b, and shape shown in Fig. 4–49a, is

A =
ab

3
=

2 m(240 N>m)

3
= 160 N and x =

3

4
 a =

3

4
 (2 m) = 1.5 m

EXAMPLE   4.21

w � (60 x2)N/m

(a)

dA � w dx

2 m
x dx

O
x

240 N/mw

(b)

O
x

w

C

x � 1.5 m

FR � 160 N

Fig. 4–49 
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4

EXAMPLE   4.22

A distributed loading of p = (800x ) Pa acts over the top surface of 
the beam shown in Fig. 4–50a. Determine the magnitude and location 
of the equivalent resultant force.

SOLUTION
Since the loading intensity is uniform along the width of the beam 
(the y axis), the loading can be viewed in two dimensions as shown in 
Fig. 4–50b. Here

  w = (800x N>m2)(0.2 m)

  = (160x) N>m
At x = 9 m, note that w = 1440 N>m. Although we may again apply 
Eqs. 4–19 and 4–20 as in the previous example, it is simpler to use the 
table on the inside back cover.

The magnitude of the resultant force is equivalent to the area of the 
triangle.

 FR = 1
2(9 m)(1440 N>m) = 6480 N = 6.48 kN Ans.

The line of action of FR passes through the centroid C of this triangle. 
Hence,

 x = 9 m - 1
3(9 m) = 6 m Ans.

The results are shown in Fig. 4–50c.

NOTE: We may also view the resultant FR as acting through the centroid 
of the volume of the loading diagram p = p(x) in Fig. 4–50a. Hence FR 
intersects the x–y plane at the point (6 m, 0). Furthermore, the 
magnitude of FR is equal to the volume under the loading diagram; i.e.,

 FR = V = 1
2(7200 N>m2)(9 m)(0.2 m) = 6.48 kN Ans. Fig. 4–50

w � 160x N/m

(b)

9 m

x

w 1440 N/m

x

C

FR � 6.48 kN

3 mx � 6 m

(c)
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The granular material exerts the distributed loading on the beam as 
shown in Fig. 4–51a. Determine the magnitude and location of the 
equivalent resultant of this load.

SOLUTION
The area of the loading diagram is a trapezoid, and therefore the 
solution can be obtained directly from the area and centroid formulas 
for a trapezoid listed on the inside back cover. Since these formulas are 
not easily remembered, instead we will solve this problem by using 
“composite” areas. Here we will divide the trapezoidal loading into a 
rectangular and triangular loading as shown in Fig. 4–51b. The 
magnitude of the force represented by each of these loadings is equal 
to its associated area,

  F1 = 1
2(9 ft)(50 lb>ft) = 225 lb

  F2 = (9 ft)(50 lb>ft) = 450 lb

The lines of action of these parallel forces act through the respective 
centroids of their associated areas and therefore intersect the beam at

  x1 = 1
3(9 ft) = 3 ft

  x2 = 1
2(9 ft) = 4.5 ft

The two parallel forces F1 and F2 can be reduced to a single resultant 
FR. The magnitude of FR is

+ TFR = �F; FR = 225 + 450 = 675 lb Ans.

We can find the location of FR with reference to point A, Figs. 4–51b 
and 4–51c. We require

c+  (MR)A = �MA;  x(675) = 3(225) + 4.5(450)

 x = 4 ft Ans.

NOTE: The trapezoidal area in Fig. 4–51a can also be divided into two 
triangular areas as shown in Fig. 4–51d. In this case

  F3 = 1
2(9 ft)(100 lb>ft) = 450 lb

  F4 = 1
2(9 ft)(50 lb>ft) = 225 lb

and

  x3 = 1
3(9 ft) = 3 ft

  x4 = 9 ft -  13(9 ft) = 6 ft

Using these results, show that again FR = 675 lb and x = 4 ft.

EXAMPLE   4.23

Fig. 4–51

100 lb/ft

50 lb/ft

9 ft

BA

(a)

9 ft

B
A

(b)

50 lb/ft

50 lb/ft

F1 F2

x1
x2

B
A

(c)

FR

x

F3 F4

50 lb/ft

x3

9 ft
x4

(d)

100 lb/ft
A
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PROBLEMS

4

F4–37. Determine the resultant force and specify where it 
acts on the beam measured from A.

6 kN/m
9 kN/m

3 kN/m

3 m1.5 m 1.5 m

A B

Prob. F4–37

F4–38. Determine the resultant force and specify where it 
acts on the beam measured from A.

A B

6 ft 8 ft

150 lb/ft

Prob. F4–38

F4–39. Determine the resultant force and specify where it 
acts on the beam measured from A.

6 kN/m

6 m3 m

A
B

Prob. F4–39

F4–40. Determine the resultant force and specify where it 
acts on the beam measured from A.

BA

6 ft 3 ft 3 ft

500 lb200 lb/ft

150 lb/ft

Prob. F4–40

F4–41. Determine the resultant force and specify where it 
acts on the beam measured from A.

6 kN/m

3 kN/m

1.5 m4.5 m

A
B

Prob. F4–41

F4–42. Determine the resultant force and specify where it 
acts on the beam measured from A.

4 m

w � 2.5x3

160 N/m

w

A
x

Prob. F4–42

FUNDAMENTAL PROBLEMS
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FUNDAMENTAL PROBLEMS

4

4–138. Replace the loading by an equivalent resultant 
force and couple moment acting at point O.

9 ft

9 ft

O

50 lb/ft

50 lb/ft

Prob. 4–138

4–139. Replace the distributed loading with an equivalent 
resultant force, and specify its location on the beam 
measured from point O.

O

3 m 1.5 m

3 kN/m

Prob. 4–139

*4–140. Replace the loading by an equivalent resultant force 
and specify its location on the beam, measured from point A.

BA
x

2 kN/m

5 kN/m

w

4 m 2 m

Prob. 4–140

PROBLEMS

4–141. Currently eighty-five percent of all neck injuries 
are caused by rear-end car collisions. To alleviate this 
problem, an automobile seat restraint has been developed 
that provides additional pressure contact with the cranium. 
During dynamic tests the distribution of load on the 
cranium has been plotted and shown to be parabolic. 
Determine the equivalent resultant force and its location, 
measured from point A.

A

w

B

x

w � 12(1 � 2x2) lb/ft

0.5 ft
12 lb/ft

18 lb/ft

Prob. 4–141

4–142. Replace the distributed loading by an equivalent 
resultant force, and specify its location on the beam, 
measured from the pin at A.

3 m3 m

A B

2 kN/m

4 kN/m

Prob. 4–142
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4

4–143. Replace this loading by an equivalent resultant 
force and specify its location, measured from point O.

1.5 m2 m

6 kN/m

4 kN/m

O

Prob. 4–143

*4–144. The distribution of soil loading on the bottom of 
a building slab is shown. Replace this loading by an 
equivalent resultant force and specify its location, measured 
from point O.

12 ft 9 ft

100 lb/ft50 lb/ft

300 lb/ft

O

Prob. 4–144

4–145. Replace the loading by an equivalent resultant 
force and couple moment acting at point O.

1.5 m 0.75 m 0.75 m

5 kN/m

8 kN/m

O

Prob. 4–145

4–146. Replace the distributed loading by an equivalent 
resultant force and couple moment acting at point A.

A

3 m 3 m

6 kN/m 6 kN/m

3 kN/m

B

Prob. 4–146

4–147. Determine the length b of the triangular load and 
its position a on the beam such that the equivalent resultant 
force is zero and the resultant couple moment is 8 kN # m 
clockwise.

a

9 m

4 kN/m

A

b

2.5 kN/m

Prob. 4–147
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4

*4–148. The form is used to cast a concrete wall having a 
width of 5 m. Determine the equivalent resultant force the 
wet concrete exerts on the form AB if the pressure 
distribution due to the concrete can be approximated as 
shown. Specify the location of the resultant force, measured 
from point B.

A

B

4 m

8 kPa

z

p

� (4    ) kPap z 2
1

Prob. 4–148

4–149. If the soil exerts a trapezoidal distribution of load 
on the bottom of the footing, determine the intensities w1 
and w2 of this distribution needed to support the column 
loadings.

3.5 m2.5 m
1 m 1 m

60 kN
80 kN

50 kN

w1

w2

Prob. 4–149

4–150. Replace the loading by an equivalent force and 
couple moment acting at point O.

O

7.5 m 4.5 m

500 kN�m

6 kN/m 15 kN

Prob. 4–150

4–151. Replace the loading by a single resultant force, and 
specify the location of the force measured from point O.

O

7.5 m 4.5 m

500 kN�m

6 kN/m 15 kN

Prob. 4–151

*4–152. Replace the loading by an equivalent resultant 
force and couple moment acting at point A.

4–153. Replace the loading by a single resultant force, and 
specify its location on the beam measured from point A.

A B

3 m

400 N/m

3 m

Probs. 4–152/153
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4–154. Replace the distributed loading by an equivalent 
resultant force and specify where its line of action intersects 
a horizontal line along member AB, measured from A.

4–155. Replace the distributed loading by an equivalent 
resultant force and specify where its line of action intersects 
a vertical line along member BC, measured from C.

4 m

3 kN/m

2 kN/m

3 m

A
B

C

Probs. 4–154/155

*4–156. Determine the length b of the triangular load and 
its position a on the beam such that the equivalent resultant 
force is zero and the resultant couple moment is 8 kN # m 
clockwise.

4 m

ba

6 kN/m

2 kN/mA

Prob. 4–156

4–157. Determine the equivalent resultant force and 
couple moment at point O.

w

w � (   x3 ) kN/m

9 kN/m

1
3

x
O

3 m

Prob. 4–157

4–158. Determine the magnitude of the equivalent 
resultant force and its location, measured from point O.

O

w

6 ft

4 lb/ft

8.90 lb/ft

x

w � (4 � 2   x ) lb/ft

Prob. 4–158
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4–161. Replace the loading by an equivalent resultant 
force and couple moment acting at point O.

L

O x

w

w � w0 cos      x2L
p( (

Prob. 4–161

4–162. Wet concrete exerts a pressure distribution along 
the wall of the form. Determine the resultant force of this 
distribution and specify the height h where the bracing strut 
should be placed so that it lies through the line of action of 
the resultant force. The wall has a width of 5 m.

4 m

h

� (4     ) kPap
1/2z

8 kPa

z

p

Prob. 4–162

4–159. The distributed load acts on the shaft as shown. 
Determine the magnitude of the equivalent resultant force 
and specify its location, measured from the support, A.

10 lb/ft

28 lb/ft

A B

w

x

18 lb/ftw � (2x¤ � 8x � 18) lb/ft

1 ft 2 ft 2 ft

Prob. 4–159

*4–160. Replace the distributed loading with an equivalent 
resultant force, and specify its location on the beam 
measured from point A.

100 lb/ft

15 ft

370 lb/ft

w

A

B
x

w � (x2 � 3x � 100) lb/ft

Prob. 4–160



4

 CHAPTER REVIEW 201

Moment of Force—Scalar Definition

A force produces a turning effect or 
moment about a point O that does not 
lie on its line of action. In scalar form, 
the moment magnitude is the product of 
the force and the moment arm or 
perpendicular distance from point O to 
the line of action of the force.

The direction of the moment is defined 
using the right-hand rule. MO always 
acts along an axis perpendicular to the 
plane containing F and d, and passes 
through the point O.

Rather than finding d, it is normally 
easier to resolve the force into its x and 
y components, determine the moment of 
each component about the point, and 
then sum the results. This is called the 
principle of moments.

MO = Fd

MO = Fd = Fxy - Fyx

O

Moment axis

d
F

MO

F
Fy

y

y

O

d x

x

Fx

Moment of a Force—Vector Definition

Since three-dimensional geometry is 
generally more difficult to visualize, the 
vector cross product should be used 
to determine the moment. Here 
MO = r * F, where r is a position 
vector that extends from point O to 
any point A, B, or C on the line of action 
of F.

If the position vector r and force F are 
expressed as Cartesian vectors, then the 
cross product results from the expansion 
of a determinant.

MO = rA * F = rB * F = rC * F

MO = r * F = 3  i j k
rx ry rz

Fx Fy Fz

 3

z

x

y

F

O

A

B

C

rA

rB

MO

rC

 CHAPTER REVIEW
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Moment about an Axis

If the moment of a force F is to be 
determined about an arbitrary axis a, 
then for a scalar solution the moment 
arm, or shortest distance da from the line 
of action of the force to the axis must be 
used. This distance is perpendicular to 
both the axis and the force line of action.

Note that when the line of action of F 
intersects the axis, then the moment of F 
about the axis is zero. Also, when the 
line of action of F is parallel to the axis, 
the moment of F about the axis is zero.

In three dimensions, the scalar triple 
product should be used. Here ua is the 
unit vector that specifies the direction of 
the axis, and r is a position vector that is 
directed from any point on the axis to 
any point on the line of action of the 
force. If Ma is calculated as a negative 
scalar, then the sense of direction of Ma 
is opposite to ua.

Ma = Fda

Ma = ua
# (r * F) = 3 uax

uay
uaz

rx ry rz

Fx Fy Fz

3

a da

Ma F

r

Ma

ua

a

a¿

Axis of projection

F

Couple Moment

A couple consists of two equal but 
opposite forces that act a perpendicular 
distance d apart. Couples tend to 
produce a rotation without translation.

The magnitude of the couple moment is 
M = Fd, and its direction is established 
using the right-hand rule.

If the vector cross product is used to 
determine the moment of a couple, then 
r extends from any point on the line of 
action of one of the forces to any point 
on the line of action of the other force F 
that is used in the cross product.

 M = Fd

 M = r * F

�F

F
d

B
A

F

�Fr
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Simplification of a Force and 
Couple System

Any system of forces and couples can be 
reduced to a single resultant force and 
resultant couple moment acting at a 
point. The resultant force is the sum of 
all the forces in the system,  FR = �F, 
and the resultant couple moment is 
equal to the sum of all the moments of 
the forces about the point and couple 
moments.  MRO

= �MO + �M.

Further simplification to a single resultant 
force is possible provided the force system 
is concurrent, coplanar, or parallel. To 
find the location of the resultant force 
from a point, it is necessary to equate the 
moment of the resultant force about the 
point to the moment of the forces and 
couples in the system about the same  
point.

If the resultant force and couple moment 
at a point are not perpendicular to one 
another, then this system can be reduced 
to a wrench, which consists of the resultant 
force and collinear couple moment.

O
r2

r1 O�

FR

MRO

u
F1F2

M

O

FR

a

b
a

b

MRO

a

b
a

b

FR

d �
MRO

FR

P�
O

O �

FR

MRO

u

  

M��

O

a

b a

b

FR

P
d

Coplanar Distributed Loading

A simple distributed loading can be 
represented by its resultant force, which 
is equivalent to the area under the 
loading curve. This resultant has a line of 
action that passes through the centroid 
or geometric center of the area or 
volume under the loading diagram.

x

L

w

w � w(x)

O

               
x

O

FR

C

L

A
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4.6 Moment of a Couple

A couple is defined as two parallel forces that have the same magnitude, 
but opposite directions, and are separated by a perpendicular distance d, 
Fig. 4–25. Since the resultant force is zero, the only effect of a couple is to 
produce an actual rotation, or if no movement is possible, there is a 
tendency of rotation in a specified direction. For example, imagine that 
you are driving a car with both hands on the steering wheel and you are 
making a turn. One hand will push up on the wheel while the other hand 
pulls down, which causes the steering wheel to rotate.

The moment produced by a couple is called a couple moment. We can 
determine its value by finding the sum of the moments of both couple 
forces about any arbitrary point. For example, in Fig. 4–26, position vectors 
rA and rB are directed from point O to points A and B lying on the line of 
action of -F and F. The couple moment determined about O is therefore

M = rB * F + rA * -F = (rB - rA) * F

However rB = rA + r or r = rB - rA, so that

 M = r * F (4–13)

This result indicates that a couple moment is a free vector, i.e., it can 
act at any point since M depends only upon the position vector r directed 
between the forces and not the position vectors rA and rB, directed from 
the arbitrary point O to the forces. This concept is unlike the moment of 
a force, which requires a definite point (or axis) about which moments 
are determined.

Scalar Formulation. The moment of a couple, M, Fig. 4–27, is 
defined as having a magnitude of

 M = Fd  (4–14)

where F is the magnitude of one of the forces and d is the perpendicular 
distance or moment arm between the forces. The direction and sense of 
the couple moment are determined by the right-hand rule, where the 
thumb indicates this direction when the fingers are curled with the sense 
of rotation caused by the couple forces. In all cases, M will act 
perpendicular to the plane containing these forces.

Vector Formulation. The moment of a couple can also be 
expressed by the vector cross product using Eq. 4–13, i.e.,

 M = r * F  (4–15)

Application of this equation is easily remembered if one thinks of taking 
the moments of both forces about a point lying on the line of action of 
one of the forces. For example, if moments are taken about point A in 
Fig. 4–26, the moment of -F is zero about this point, and the moment of 
F is defined from Eq. 4–15. Therefore, in the formulation r is crossed with 
the force F to which it is directed.

F

�F

d

Fig. 4–25

F

�F
d

M

Fig. 4–27

O

B
A

F

�F

rArB

r

Fig. 4–26
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Equivalent Couples. If two couples produce a moment with the same 
magnitude and direction, then these two couples are equivalent. For example, 
the two couples shown in Fig. 4–28 are equivalent because each couple 
moment has a magnitude of M = 30 N(0.4 m) = 40 N(0.3 m) = 12 N # m, 
and each is directed into the plane of the page. Notice that larger forces are 
required in the second case to create the same turning effect because the 
hands are placed closer together. Also, if the wheel was connected to the shaft 
at a point other than at its center, then the wheel would still turn when each 
couple is applied since the 12 N # m couple is a free vector.

Resultant Couple Moment. Since couple moments are vectors, 
their resultant can be determined by vector addition. For example, 
consider the couple moments M1 and M2 acting on the pipe in Fig. 4–29a. 
Since each couple moment is a free vector, we can join their tails at any 
arbitrary point and find the resultant couple moment, MR = M1 + M2 as 
shown in Fig. 4–29b.

If more than two couple moments act on the body, we may generalize 
this concept and write the vector resultant as

 MR = �(r * F) (4–16)

These concepts are illustrated numerically in the examples that follow. 
In general, problems projected in two dimensions should be solved using 
a scalar analysis since the moment arms and force components are easy 
to determine.

0.3 m0.4 m

30 N

40 N

40 N

30 N

Fig. 4–28 (© Russell C. Hibbeler)

M2

M1

(a)

MR
(b)

M2 M1

Fig. 4–29
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F F

Steering wheels on vehicles have been made 
smaller than on older vehicles because 
power steering does not require the driver 
to apply a large couple moment to the rim 
of the wheel. (© Russell C. Hibbeler)

Important Points

  A couple moment is produced by two noncollinear forces that 
are equal in magnitude but opposite in direction. Its effect is to 
produce pure rotation, or tendency for rotation in a specified 
direction.

  A couple moment is a free vector, and as a result it causes the 
same rotational effect on a body regardless of where the couple 
moment is applied to the body.

  The moment of the two couple forces can be determined about 
any point. For convenience, this point is often chosen on the line 
of action of one of the forces in order to eliminate the moment of 
this force about the point.

  In three dimensions the couple moment is often determined 
using the vector formulation, M = r * F, where r is directed 
from any point on the line of action of one of the forces to any 
point on the line of action of the other force F.

  A resultant couple moment is simply the vector sum of all the 
couple moments of the system.

Determine the resultant couple moment of the three couples acting 
on the plate in Fig. 4–30.

SOLUTION
As shown the perpendicular distances between each pair of couple forces 
are d1 = 4 ft, d2 = 3 ft, and d3 = 5 ft. Considering counterclockwise 
couple moments as positive, we have

 a+  MR = �M;  MR = -F1d1 + F2d2 - F3d3

 = -(200 lb)(4 ft) + (450 lb)(3 ft) - (300 lb)(5 ft)

 = -950 lb # ft = 950 lb # ft b Ans.

The negative sign indicates that MR has a clockwise rotational sense.

EXAMPLE   4.10

F2 � 450 lb

F1 � 200 lb
F3 � 300 lb

F3 � 300 lb

F2 � 450 lb

d3 � 5 ft

F1 � 200 lb

A

B

d2 � 3 ft

d1 � 4 ft

Fig. 4–30
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EXAMPLE   4.11

Determine the magnitude and direction of the couple moment acting 
on the gear in Fig. 4–31a.

30�

30�

(c)

F � 600 N

F � 600 N

O

d

Fig. 4–31

(b)

30�

F � 600 N
600 sin 30� N

600 cos 30� N

30�

F � 600 N 600 sin 30� N

600 cos 30� N

0.2 m

O

A

30�

30�

(a)

F � 600 N

F � 600 N

0.2 m

O

SOLUTION
The easiest solution requires resolving each force into its components 
as shown in Fig. 4–31b. The couple moment can be determined by 
summing the moments of these force components about any point, for 
example, the center O of the gear or point A. If we consider 
counterclockwise moments as positive, we have

 a+  M = �MO;  M = (600 cos 30� N)(0.2 m) - (600 sin 30� N)(0.2 m)

 = 43.9 N # md  Ans.

or

 a+  M = �MA;  M = (600 cos 30� N)(0.2 m) - (600 sin 30� N)(0.2 m)

 = 43.9 N # md  Ans.

This positive result indicates that M has a counterclockwise rotational 
sense, so it is directed outward, perpendicular to the page.

NOTE: The same result can also be obtained using M = Fd, where d is 
the perpendicular distance between the lines of action of the couple 
forces, Fig. 4–31c. However, the computation for d is more involved. 
Realize that the couple moment is a free vector and can act at any 
point on the gear and produce the same turning effect about point O.
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Determine the couple moment acting on the pipe shown in Fig. 4–32a. 
Segment AB is directed 30° below the x–y plane.

EXAMPLE   4.12

6 in.

z

x

y

25 lb

A

25 lb

B
(d)

30�

d

O

Fig. 4–32

z

x
25 lb

A

25 lb

B

(b)

y
rB

rA

O

SOLUTION I (VECTOR ANALYSIS)
The moment of the two couple forces can be found about any point. If 
point O is considered, Fig. 4–32b, we have

 M = rA * (-25k) + rB * (25k)

 = (8j) * (-25k) + (6 cos 30�i + 8j - 6 sin 30�k) * (25k)

 = -200i - 129.9j + 200i

 = {-130j} lb # in.  Ans.

It is easier to take moments of the couple forces about a point lying on 
the line of action of one of the forces, e.g., point A, Fig. 4–32c. In this 
case the moment of the force at A is zero, so that

 M = rAB * (25k)

 = (6 cos 30�i - 6 sin 30�k) * (25k)

  = {-130j} lb # in.  Ans.

SOLUTION II (SCALAR ANALYSIS)
Although this problem is shown in three dimensions, the geometry is 
simple enough to use the scalar equation M = Fd. The perpendicular 
distance between the lines of action of the couple forces is 
d = 6 cos 30� = 5.196 in., Fig. 4–32d. Hence, taking moments of the 
forces about either point A or point B yields

M = Fd = 25 lb (5.196 in.) = 129.9 lb # in.

Applying the right-hand rule, M acts in the -j direction. Thus,

 M = {-130j} lb # in.  Ans.

z

x

y

25 lb

A

25 lb

B
(c)

rAB

O

O

z

30�

x
y

25 lb

A

25 lb

B

8 in.

6 in.

(a)
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Replace the two couples acting on the pipe column in Fig. 4–33a by a 
resultant couple moment.

EXAMPLE   4.13

SOLUTION (VECTOR ANALYSIS)
The couple moment M1, developed by the forces at A and B, can 
easily be determined from a scalar formulation.

M1 = Fd = 150 N(0.4 m) = 60 N # m
By the right-hand rule, M1 acts in the + i direction, Fig. 4–33b. Hence,

M1 = {60i} N # m
Vector analysis will be used to determine M2, caused by forces at C 

and D. If moments are calculated about point D, Fig. 4–33a, 
M2 = rDC * FC, then

 M2 = rDC * FC = (0.3i) * 312514
52j - 12513

52k4

 = (0.3i) * [100j - 75k] = 30(i * j) - 22.5(i * k)

 = {22.5j + 30k} N # m
Since M1 and M2 are free vectors, they may be moved to some 
arbitrary point and added vectorially, Fig. 4–33c. The resultant couple 
moment becomes

 MR = M1 + M2 = {60i + 22.5j + 30k} N # m Ans.

0.3 m

150 N
125 N

125 N

3
45

D

z

y
53

4

C

0.4 m
150 N

A

B

x

(a)

M2

M1

3
45

(b) (c)

M1

MR
M2

Fig. 4–33
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FUNDAMENTAL PROBLEMS

F4–22. Determine the couple moment acting on the beam.

A B

4 m

1 m

1 m

10 kN

10 kN

4

3

5

4

3

5

Prob. F4–22

F4–23. Determine the resultant couple moment acting on 
the pipe assembly.

y

z

(Mc)3 � 300 lb �ft

(Mc)1 � 450 lb �ft

(Mc)2 � 250 lb �ft

2 ft
2 ft

2 ft
1.5 ft

3.5 ft

x

Prob. F4–23

F4–24. Determine the couple moment acting on the pipe 
assembly and express the result as a Cartesian vector.

B

A
0.4 m

z

yx

FA � 450 N

FB � 450 N

3

3

4

4

5

5

C

O

0.3 m

Prob. F4–24

F4–19. Determine the resultant couple moment acting on 
the beam.

0.2 m

200 N

200 N

A

300 N300 N

400 N 400 N

3 m 2 m

Prob. F4–19

F4–20. Determine the resultant couple moment acting on 
the triangular plate.

4 ft

4 ft 4 ft

300 lb

200 lb

200 lb

300 lb

150 lb

150 lb

Prob. F4–20

F4–21. Determine the magnitude of F so that the resultant 
couple moment acting on the beam is 1.5 kN # m clockwise.

2 kN

2 kN

0.3 m
A

F

�F

B

0.9 m

Prob. F4–21
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PROBLEMS

4–69. If the resultant couple of the three couples acting on 
the triangular block is to be zero, determine the magnitude 
of forces F and P.

F

y

z

D P

�F

�PA

C

B

x

600 mm
150 N

150 N

400 mm

500 mm300 mm

Prob. 4–69

4–70. Two couples act on the beam. If F = 125 lb, 
determine the resultant couple moment.

4–71. Two couples act on the beam. Determine the 
magnitude of F so that the resultant couple moment is 
450 lb # ft, counterclockwise. Where on the beam does the 
resultant couple moment act?

200 lb

200 lb

2 ft

1.5 ft 1.25 ft

30�

30�

�F

F

Probs. 4–70/71

4–67. A clockwise couple M = 5 N # m is resisted by the 
shaft of the electric motor. Determine the magnitude of the 
reactive forces -R and R which act at supports A and B so 
that the resultant of the two couples is zero.

A B

M

R�R

150 mm

60�60�

Prob. 4–67

*4–68. A twist of 4 N # m is applied to the handle of the 
screwdriver. Resolve this couple moment into a pair of couple 
forces F exerted on the handle and P exerted on the blade.

30 mm

5 mm

4 N�m

F
P

–F

–P

Prob. 4–68
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4–74. The man tries to open the valve by applying the 
couple forces of F = 75 N to the wheel. Determine the 
couple moment produced.

4–75. If the valve can be opened with a couple moment of 
25 N # m, determine the required magnitude of each couple 
force which must be applied to the wheel.

150 mm 150 mm

F

F

Probs. 4–74/75

*4–76. Determine the magnitude of F so that the resultant 
couple moment is 12 kN # m, counterclockwise. Where on 
the beam does the resultant couple moment act?

F�F

8 kN

8 kN

1.2 m

0.3 m

0.4 m

30� 30�

Prob. 4–76

*4–72. Determine the magnitude of the couple forces F so 
that the resultant couple moment on the crank is zero.

150 lb

150 lb

30� 30�

45�45�
30�

30�

F

–F
5 in.

5 in.

4 in.

4 in.

Prob. 4–72

4–73. The ends of the triangular plate are subjected to 
three couples. Determine the magnitude of the force F so 
that the resultant couple moment is 400 N # m clockwise.

250 N 250 N

600 N

600 N

1 m

�F

F

40� 40� 

Prob. 4–73
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4–82. Express the moment of the couple acting on the 
pipe assembly in Cartesian vector form. What is the 
magnitude of the couple moment?

z

y

x
B

A

20 lb

20 lb

1 ft
C

1.5 ft

3 ft

2 ft

1 ft

Prob. 4–82

4–83. If M1 = 180 lb # ft, M2 = 90 lb # ft, and M3 = 120 lb # ft, 
determine the magnitude and coordinate direction angles 
of the resultant couple moment.

*4–84. Determine the magnitudes of couple moments M1, 
M2, and M3 so that the resultant couple moment is zero.

x

z

y

2 ft

2 ft

2 ft

3 ft

150 lb � ft

1 ft

45�

45�

M1

M2

M3

Probs. 4–83/84

4–77. Two couples act on the beam as shown. If F = 150 lb, 
determine the resultant couple moment.

4–78. Two couples act on the beam as shown. Determine 
the magnitude of F so that the resultant couple moment is 
300 lb # ft counterclockwise. Where on the beam does the 
resultant couple act?

200 lb

200 lb

1.5 ft

–F

4
35

F 4
35

4 ft

Probs. 4–77/78

4–79. Two couples act on the frame. If the resultant couple 
moment is to be zero, determine the distance d between the 
80-lb couple forces.

*4–80. Two couples act on the frame. If d = 4 ft, determine 
the resultant couple moment. Compute the result by 
resolving each force into x and y components and (a) finding 
the moment of each couple (Eq. 4–13) and (b) summing the 
moments of all the force components about point A.

4–81. Two couples act on the frame. If d = 4 ft, determine 
the resultant couple moment. Compute the result by 
resolving each force into x and y components and (a) finding 
the moment of each couple (Eq. 4–13) and (b) summing the 
moments of all the force components about point B.

2 ft

B

A

y

1 ft

3 ft
50 lb

80 lb

50 lb
30�

30�

5

4
3

80 lb

3 ft

d

x

5

4
3

Probs. 4–79/80/81
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F

F

B

D

(b)

0.2 m
B

A

C

0.5 m

0.5 m

F

O

0.1 m

(c)

0.4 m

FA

400 N

u

Fig. 5–22

0.5 m

0.2 m

B

A

D

C

0.1 m

0.2 m

(a)

400 N
The lever ABC is pin supported at A and connected to a short link BD 

as shown in Fig. 5–22a. If the weight of the members is negligible, 

determine the force of the pin on the lever at A.

SOLUTION
Free-Body Diagrams. As shown in Fig. 5–22b, the short link BD is 

a two-force member, so the resultant forces from the pins D and B must 

be equal, opposite, and collinear. Although the magnitude of the force 

is unknown, the line of action is known since it passes through B and D.

Lever ABC is a three-force member, and therefore, in order to 

satisfy moment equilibrium, the three nonparallel forces acting on it 

must be concurrent at O, Fig. 5–22c. In particular, note that the force F 

on the lever at B is equal but opposite to the force F acting at B on the 

link. Why? The distance CO must be 0.5 m since the lines of action of 

F and the 400-N force are known.

Equations of Equilibrium. By requiring the force system to be 

concurrent at O, since �MO = 0, the angle u which defines the line of 

action of FA  can be determined from trigonometry,

u = tan-1a 0.7

0.4
b = 60.3�

Using the x, y axes and applying the force equilibrium equations,

 S+ �Fx = 0;  FA cos 60.3� - F cos 45� + 400 N = 0

 + c�Fy = 0;  FA sin 60.3� - F sin 45� = 0

Solving, we get

  FA = 1.07 kN  Ans.

 F = 1.32 kN

NOTE: We can also solve this problem by representing the force at A 

by its two components Ax and Ay and applying �MA = 0, �Fx = 0, 
�Fy = 0 to the lever. Once A x and A y are determined, we can get FA  

and u.

EXAMPLE   5.13 
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P5–1. Draw the free-body diagram of each object.

(a)

500 N

A B

3 m 2 m

5

4
3

(b)

A

B

2 m

3 m

600 N � m

(c)

A

B

3 m 3 m

400 N/m

(d)

A

B

4 m

500 N

4

3

5

30�

3 m

(e)

A B

2 m 2 m

200 N/m

A

(f)

B

2 m

400 N

1 m

30�

C

 PRELIMINARY PROBLEMS

Prob. P5–1
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 FUNDAMENTAL PROBLEMS

F5–4. Determine the components of reaction at the fixed 

support A. Neglect the thickness of the beam.

60�

30�

3 m
1 m 1 m 1 m 400 N

200 N 200 N 200 N

A

Prob. F5–4

F5–5. The 25-kg bar has a center of mass at G. If it is 

supported by a smooth peg at C, a roller at A, and cord AB, 

determine the reactions at these supports.

A

B
G

C

D

30� 15�

0.5 m

0.2 m

0.3 m

Prob. F5–5

F5–6. Determine the reactions at the smooth contact 

points A, B, and C on the bar.

0.4 m

250 N

0.2 m

0.15 m

30�
A

B

C

30�

Prob. F5–6

All problem solutions must include an FBD.

F5–1. Determine the horizontal and vertical components 

of reaction at the supports. Neglect the thickness of the 

beam.

B
A

5 ft 5 ft 5 ft

500 lb

600 lb � ft4
3

5

Prob. F5–1

F5–2. Determine the horizontal and vertical components 

of reaction at the pin A and the reaction on the beam at C.

1.5 m

C

B

A

1.5 m 1.5 m

D

4 kN

Prob. F5–2

F5–3. The truss is supported by a pin at A and a roller at B. 

Determine the support reactions.

A

B

2 m
5 kN

10 kN

2 m

4 m

4 m

45�

Prob. F5–3
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PROBLEMS

5–13. Determine the reactions at the supports.

3 m 3 m

A B

900 N/m

600 N/m    

Prob. 5–13

5–14. Determine the reactions at the supports.

B

A

3 m

800 N/m

3 m

1 m

Prob. 5–14

5–15. Determine the reactions at the supports.

A B

2 m 2 m 2 m

2 m

6 kN

5 kN

8 kN

Prob. 5–15

All problem solutions must include an FBD.

5–10. Determine the components of the support reactions 

at the fixed support A on the cantilevered beam.

1.5 m

1.5 m

30�

30�

4 kN

6 kN

A
1.5 m

Prob. 5–10

5–11. Determine the reactions at the supports.

400 N/m

3 m

3

4

5

3 m

A
B

Prob. 5–11

*5–12. Determine the horizontal and vertical components 

of reaction at the pin A and the reaction of the rocker B on 

the beam.

6 m

A B

4 kN

2 m

30�

Prob. 5–12
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5–19. The man has a weight W and stands at the center of 

the plank. If the planes at A and B are smooth, determine 

the tension in the cord in terms of W and u.

A

B

L
uf

Prob. 5–19

*5–20. A uniform glass rod having a length L is placed in 

the smooth hemispherical bowl having a radius r. Determine 

the angle of inclination u for equilibrium.

B
r

A

u

Prob. 5–20

5–21. The uniform rod AB has a mass of 40 kg. Determine 

the force in the cable when the rod is in the position shown. 

There is a smooth collar at A.

A

60�

3 m

C
B

Prob. 5–21

*5–16. Determine the tension in the cable and the 

horizontal and vertical components of reaction of the pin A. 

The pulley at D is frictionless and the cylinder weighs 80 lb.

BA

D

C

5 ft 5 ft

2

1

3 ft

Prob. 5–16

5–17. The man attempts to support the load of boards 

having a weight W and a center of gravity at G. If he is 

standing on a smooth floor, determine the smallest angle u 

at which he can hold them up in the position shown. Neglect 

his weight.

A B

G
4 ft

4 ft

3 ft0.5 ft

u

Prob. 5–17

5–18. Determine the components of reaction at the 

supports A and B on the rod.

A
B

P

L––
2

L––
2

Prob. 5–18
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5–25. Determine the reactions on the bent rod which is 

supported by a smooth surface at B and by a collar at A, 

which is fixed to the rod and is free to slide over the fixed 

inclined rod.

3 ft3 ft

3

45

100 lb

200 lb � ft

2 ft

B 12
5

13

A

Prob. 5–25

5–26. The mobile crane is symmetrically supported by two 

outriggers at A and two at B in order to relieve the 

suspension of the truck upon which it rests and to provide 

greater stability. If the crane boom and truck have a mass of 

18 Mg and center of mass at G1, and the boom has a mass 

of 1.8 Mg and a center of mass at G2, determine the vertical 

reactions at each of the four outriggers as a function of the 

boom angle u when the boom is supporting a load having a 

mass of 1.2 Mg. Plot the results measured from u = 0° to the 

critical angle where tipping starts to occur.

G2

G1

A B

1 m

6.25 m

1 m2 m

6 m

Prob. 5–26

5–22. If the intensity of the distributed load acting on the 

beam is w = 3 kN>m, determine the reactions at the roller A 

and pin B.

5–23. If the roller at A and the pin at B can support a load 

up to 4 kN and 8 kN, respectively, determine the maximum 

intensity of the distributed load w, measured in kN>m, so 

that failure of the supports does not occur.

A

B

w

3 m

30�

4 m

Probs. 5–22/23

*5–24. The relay regulates voltage and current. Determine 

the force in the spring CD, which has a stiffness of k = 120 N>m,  

so that it will allow the armature to make contact at A 

in figure (a) with a vertical force of 0.4 N. Also, determine the 

force in the spring when the coil is energized and attracts 

the armature to E, figure (b), thereby breaking contact at A.

50 mm50 mm 30 mm

(a) (b)

D
D

kk

CC BB EA
A

10�

Prob. 5–24
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5–29. Determine the force P needed to pull the 50-kg 

roller over the smooth step. Take u = 30°.

5–30. Determine the magnitude and direction u of the 

minimum force P needed to pull the 50-kg roller over the 

smooth step.

A

B

P

300 mm
50 mm 

u

Probs. 5–29/30

5–31. The operation of the fuel pump for an automobile 

depends on the reciprocating action of the rocker arm ABC, 

which is pinned at B and is spring loaded at A and D. When 

the smooth cam C is in the position shown, determine the 

horizontal and vertical components of force at the pin and 

the force along the spring DF for equilibrium. The vertical 

force acting on the rocker arm at A is FA = 60 N, and at C it 

is FC = 125 N.

50 mm

FA � 60 N

10 mm

C
D

B
A

F

E

20 mm

FC � 125 N

30�

Prob. 5–31

5–27. Determine the reactions acting on the smooth 

uniform bar, which has a mass of 20 kg.

4 m

30ºA

B

60º

Prob. 5–27

*5–28. A linear torsional spring deforms such that an 

applied couple moment M is related to the spring’s rotation u 

in radians by the equation M = (20 u) N # m. If such a spring 

is attached to the end of a pin-connected uniform 10-kg rod, 

determine the angle u for equilibrium. The spring is 

undeformed when u = 0°.

A

0.5 m

u
M � (20 u) N � m

Prob. 5–28
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5–35. The smooth pipe rests against the opening at the 

points of contact A, B, and C. Determine the reactions at 

these points needed to support the force of 300 N. Neglect 

the pipe’s thickness in the calculation.

30�

30�

300 N

B

A

C

0.5 m 0.5 m

0.26 m

0.15 m

Prob. 5–35

*5–36. The beam of negligible weight is supported 

horizontally by two springs. If the beam is horizontal and 

the springs are unstretched when the load is removed, 

determine the angle of tilt of the beam when the load is 

applied.

3 m 3 m

A

kA kB

B

C D

600 N/m 
 = 1 kN/m  = 1.5 kN/m 

Prob. 5–36

*5–32. Determine the magnitude of force at the pin A and 

in the cable BC needed to support the 500-lb load. Neglect 

the weight of the boom AB.

35�22�

8 ft

C

B

A

Prob. 5–32

5–33. The dimensions of a jib crane, which is manufactured 

by the Basick Co., are given in the figure. If the crane has a 

mass of 800 kg and a center of mass at G, and the maximum 

rated force at its end is F = 15 kN, determine the reactions 

at  its bearings. The bearing at A is a journal bearing and 

supports only a horizontal force, whereas the bearing at B is 

a thrust bearing that supports both horizontal and vertical 

components.

5–34. The dimensions of a jib crane, which is manufactured 

by the Basick Co., are given in the figure. The crane has a 

mass of 800 kg and a center of mass at G. The bearing at A 

is a journal bearing and can support a horizontal force, 

whereas the bearing at B is a thrust bearing that supports 

both horizontal and vertical components. Determine the 

maximum load F that can be suspended from its end if the 

selected bearings at A and B can sustain a maximum 

resultant load of 24 kN and 34 kN, respectively.

F

G

A

3 m

2 m

B

0.75 m

Probs. 5–33/34
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5–41. The bulk head AD is subjected to both water and   

soil-backfill pressures. Assuming AD is “pinned” to the ground 

at A, determine the horizontal and vertical reactions there and 

also the required tension in the ground anchor BC necessary 

for equilibrium. The bulk head has a mass of 800 kg.

6 m

310 kN/m118 kN/m

0.5 m

C F

A

B

D

4 m

Prob. 5–41

5–42. The boom supports the two vertical loads. Neglect 

the size of the collars at D and B and the thickness of the 

boom, and compute the horizontal and vertical components 

of force at the pin A and the force in cable CB. Set 

F1 = 800 N and F2 = 350 N.

5–43. The boom is intended to support two vertical loads, 

F1 and F2. If the cable CB can sustain a maximum load of 

1500 N before it fails, determine the critical loads if 

F1 = 2F2. Also, what is the magnitude of the maximum 

reaction at pin A?

1.5 m

30�

3

C

B

F1

F2

D

A

4

5

1 m

Probs. 5–42/43

5–37. The cantilevered jib crane is used to support the 

load  of 780 lb. If x = 5 ft, determine the reactions at 

the supports. Note that the supports are collars that allow 

the crane to rotate freely about the vertical axis. The collar 

at B supports a force in the vertical direction, whereas the 

one at A does not.

5–38. The cantilevered jib crane is used to support the 

load of 780 lb. If the trolley T can be placed anywhere 

between 1.5 ft … x … 7.5 ft, determine the maximum 

magnitude of reaction at the supports A and B. Note that 

the supports are collars that allow the crane to rotate freely 

about the vertical axis. The collar at B supports a force in 

the vertical direction, whereas the one at A does not.

8 ft

4 ft

780 lb

x

T

B

A

Probs. 5–37/38

5–39. The bar of negligible weight is supported by two 

springs, each having a stiffness k = 100 N>m. If the springs 

are originally unstretched, and the force is vertical as shown, 

determine the angle u the bar makes with the horizontal, 

when the 30-N force is applied to the bar.

*5–40. Determine the stiffness k of each spring so that 

the 30-N force causes the bar to tip u = 15° when the force is 

applied. Originally the bar is horizontal and the springs are 

unstretched. Neglect the weight of the bar.

2 m1 m

BC

30 N
k

k

Probs. 5–39/40
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5–47. Determine the reactions at the pin A and the tension 

in cord BC. Set F = 40 kN. Neglect the thickness of the beam.

*5–48. If rope BC will fail when the tension becomes 50 kN, 

determine the greatest vertical load F that can be applied to 

the beam at B. What is the magnitude of the reaction at A 

for this loading? Neglect the thickness of the beam.

C

A

F26 kN

13 12

5

5
3

4

B

4 m2 m

Probs. 5–47/48

5–49. The rigid metal strip of negligible weight is used as 

part of an electromagnetic switch. If the stiffness of the 

springs at A and B is k = 5 N>m and the strip is originally 

horizontal when the springs are unstretched, determine the 

smallest force F needed to close the contact gap at C.

50 mm 50 mm

10 mm
A

B

C

k

k

F

Prob. 5–49

*5–44. The 10-kg uniform rod is pinned at end A. If it is 

also subjected to a couple moment of 50 N # m, determine 

the smallest angle u for equilibrium. The spring is 

unstretched when u = 0, and has a stiffness of k = 60 N>m.

0.5 m

2 m

50 N � m

k � 60 N/m

B

A

u

Prob. 5–44

5–45. The man uses the hand truck to move material up the 

step. If the truck and its contents have a mass of 50 kg with 

center of gravity at G, determine the normal reaction on both 

wheels and the magnitude and direction of the minimum 

force required at the grip B needed to lift the load.

A

B

60�

0.4 m

0.5 m

0.4 m

0.4 m

0.1 m

0.2 m G

Prob. 5–45

5–46. Three uniform books, each having a weight W and 

length a, are stacked as shown. Determine the maximum 

distance d that the top book can extend out from the bottom 

one so the stack does not topple over.

a d

Prob. 5–46
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*5–52. The uniform beam has a weight W and length l 
and is supported by a pin at A and a cable BC. Determine 

the horizontal and vertical components of reaction at A 

and the tension in the cable necessary to hold the beam in 

the position shown.

f

C

B
A

l

Prob. 5–52

5–53. A boy stands out at the end of the diving board, which 

is supported by two springs A and B, each having a stiffness 

of k = 15 kN>m. In the position shown the board is horizontal. 

If the boy has a mass of 40 kg, determine the angle of tilt 

which the board makes with the horizontal after he jumps off. 

Neglect the weight of the board and assume it is rigid.

BA

1 m 3 m

Prob. 5–53

5–50. The rigid metal strip of negligible weight is used as 

part of an electromagnetic switch. Determine the maximum 

stiffness k of the springs at A and B so that the contact at C 

closes when the vertical force developed there is F = 0.5 N. 

Originally the strip is horizontal as shown.

50 mm 50 mm

10 mm
A

B

C

k

k

F

Prob. 5–50

5–51. The cantilever footing is used to support a wall near 

its edge A so that it causes a uniform soil pressure under the 

footing. Determine the uniform distribution loads, wA and 

wB, measured in lb>ft at pads A and B, necessary to support 

the wall forces of 8000 lb and 20 000 lb.

wA

A B

wB

8 ft2 ft 3 ft

1.5 ft

8000 lb

20 000 lb

0.25 ft

Prob. 5–51
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*5–56. The uniform rod of length L and weight W is 

supported on the smooth planes. Determine its position u 

for equilibrium. Neglect the thickness of the rod.

L

u

f
c

Prob. 5–56

5–57. The beam is subjected to the two concentrated loads. 

Assuming that the foundation exerts a linearly varying load 

distribution on its bottom, determine the load intensities 

w1 and w2 for equilibrium if P = 500 lb and L = 12 ft.

P 2P

w2

w1

L––
3

L––
3

L––
3

Prob. 5–57

5–54. The 30-N uniform rod has a length of l = 1 m.  

If s = 1.5 m, determine the distance h of placement at the 

end A along the smooth wall for equilibrium.

h

s

C

B

A

l

Prob. 5–54

5–55. The uniform rod has a length l and weight W. It is 

supported at one end A by a smooth wall and the other end 

by a cord of length s which is attached to the wall as shown. 

Determine the placement h for equilibrium.

h

s

C

B

A

l

Prob. 5–55
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*5–60. Determine the distance d for placement of the load P 

for equilibrium of the smooth bar in the position u as shown. 

Neglect the weight of the bar.

P

d

a

u

Prob. 5–60

5–61. If d = 1 m, and u = 30°, determine the normal 

reaction at the smooth supports and the required distance a 

for the placement of the roller if P = 600 N. Neglect the 

weight of the bar.

P

d

a

u

Prob. 5–61

5–58. The beam is subjected to the two concentrated 

loads.  Assuming that the foundation exerts a linearly 

varying load distribution on its bottom, determine the load 

intensities w1 and w2 for equilibrium in terms of the 

parameters shown.

P 2P

w2

w1

L––
3

L––
3

L––
3

Prob. 5–58

5–59. The rod supports a weight of 200 lb and is pinned at its 

end A. If it is also subjected to a couple moment of  

100 lb  #  ft, determine the angle u for equilibrium. The spring 

has an unstretched length of 2 ft and a stiffness of k = 50 lb>ft.

3 ft
3 ft

2 ft100 lb � ft
k � 50 lb/ft

B

A u

Prob. 5–59
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C5–3.  Like all aircraft, this jet plane rests on three wheels. 

Why not use an additional wheel at the tail for better 

support? (Can you think of any other reason for not 

including this wheel?) If there was a fourth tail wheel, draw 

a free-body diagram of the plane from a side (2 D) view, and 

show why one would not be able to determine all the wheel 

reactions using the equations of equilibrium.

Prob. C5–3 (© Russell C. Hibbeler)

C5–4.   Where is the best place to arrange most of the logs 

in the wheelbarrow so that it minimizes the amount of force 

on the backbone of the person transporting the load? Do an 

equilibrium analysis to explain your answer.

Prob. C5–4 (© Russell C. Hibbeler)

C5–1.  The tie rod is used to support this overhang at the 

entrance of a building. If it is pin connected to the building 

wall at A and to the center of the overhang B, determine if 

the force in the rod will increase, decrease, or remain the 

same if (a) the support at A is moved to a lower position D, 

and (b) the support at B is moved to the outer position C. 

Explain your answer with an equilibrium analysis, using 

dimensions and loads. Assume the overhang is pin supported 

from the building wall.

C
B

D

A

Prob. C5–1 (© Russell C. Hibbeler)

C5–2.  The man attempts to pull the four wheeler up the 

incline and onto the trailer. From the position shown, is it 

more effective to pull on the rope at A, or would it be better 

to pull on the rope at B? Draw a free-body diagram for each 

case, and do an equilibrium analysis to explain your answer.

Use appropriate numerical values to do your calculations.

A

B

Prob. C5–2 (© Russell C. Hibbeler)

CONCEPTUAL PROBLEMS



It is important to be able to determine the forces in the cables used to support 
this boom to ensure that it does not fail. In this chapter we will study how to 

apply equilibrium methods to determine the forces acting on the supports  
of a rigid body such as this.

Chapter 5

 (© YuryZap/Shutterstock)



Equilibrium of a  
Rigid Body

CHAPTER OBJECTIVES

■ To develop the equations of equilibrium for a rigid body.

■ To introduce the concept of the free-body diagram for a rigid body.

■ To show how to solve rigid-body equilibrium problems using the 
equations of equilibrium.

5.1 Conditions for Rigid-Body Equilibrium

In this section, we will develop both the necessary and sufficient conditions 

for the equilibrium of the rigid body in Fig. 5–1a. As shown, this body is 

subjected to an external force and couple moment system that is the result 

of the effects of gravitational, electrical, magnetic, or contact forces caused 

by adjacent bodies. The internal forces caused by interactions between 

particles within the body are not shown in this figure because these forces 

occur in equal but opposite collinear pairs and hence will cancel out, a 

consequence of Newton’s third law.

F1

M2

M1

F2

F3

F4

O

(a)

Fig. 5–1
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Using the methods of the previous chapter, the force and couple 

moment system acting on a body can be reduced to an equivalent 

resultant force and resultant couple moment at any arbitrary point O on 

or off the body, Fig. 5–1b. If this resultant force and couple moment are 

both equal to zero, then the body is said to be in equilibrium. 

Mathematically, the equilibrium of a body is expressed as

 FR = �F = 0 
(5–1)

(MR)O = �MO = 0

The first of these equations states that the sum of the forces acting on the 

body is equal to zero. The second equation states that the sum of the 

moments of all the forces in the system about point O, added to all the 

couple moments, is equal to zero. These two equations are not only 

necessary for equilibrium, they are also sufficient. To show this, consider 

summing moments about some other point, such as point A in Fig. 5–1c. 

We require

�MA = r * FR + (MR)O = 0

Since r � 0, this equation is satisfied if Eqs. 5–1 are satisfied, namely 

FR = 0 and (MR)O = 0.

When applying the equations of equilibrium, we will assume that the 

body remains rigid. In reality, however, all bodies deform when 

subjected to loads. Although this is the case, most engineering materials 

such as steel and concrete are very rigid and so their deformation is 

usually very small. Therefore, when applying the equations of 

equilibrium, we can generally assume that the body will remain rigid 

and not deform under the applied load without introducing any 

significant error. This way the direction of the applied forces and their 

moment arms with respect to a fixed reference remain the same both 

before and after the body is loaded.

EQUILIBRIUM IN TWO DIMENSIONS

In the first part of the chapter, we will consider the case where the force 

system acting on a rigid body lies in or may be projected onto a single 

plane and, furthermore, any couple moments acting on the body are 

directed perpendicular to this plane. This type of force and couple system 

is often referred to as a two-dimensional or coplanar force system. For 

example, the airplane in Fig. 5–2 has a plane of symmetry through its 

center axis, and so the loads acting on the airplane are symmetrical with 

respect to this plane. Thus, each of the two wing tires will support the same 

load T, which is represented on the side (two-dimensional) view of the 

plane as 2T.

R

W

2T

G

Fig. 5–2

F1

M2

M1

F2

F3

F4

O

(a)

FR � 0

(MR)O � 0

O

(b)

Fig. 5–1 (cont.)

FR � 0

(MR)O � 0

O

A

r

(c)
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5.2 Free-Body Diagrams

Successful application of the equations of equilibrium requires a complete 

specification of all the known and unknown external forces that act on 

the body. The best way to account for these forces is to draw a free-body 
diagram. This diagram is a sketch of the outlined shape of the body, which 

represents it as being isolated or “free” from its surroundings, i.e., a “free 

body.” On this sketch it is necessary to show all the forces and couple 

moments that the surroundings exert on the body so that these effects can 

be accounted for when the equations of equilibrium are applied. A 
thorough understanding of how to draw a free-body diagram is of primary 
importance for solving problems in mechanics.

Support Reactions. Before presenting a formal procedure as to 

how to draw a free-body diagram, we will first consider the various types 

of reactions that occur at supports and points of contact between bodies 

subjected to coplanar force systems. As a general rule,

  A support prevents the translation of a body in a given direction by 

exerting a force on the body in the opposite direction.

  A support prevents the rotation of a body in a given direction by 

exerting a couple moment on the body in the opposite direction.

For example, let us consider three ways in which a horizontal member, 

such as a beam, is supported at its end. One method consists of a roller or 

cylinder, Fig. 5–3a. Since this support only prevents the beam from 

translating in the vertical direction, the roller will only exert a force on 

the beam in this direction, Fig. 5–3b.

The beam can be supported in a more restrictive manner by using a pin, 
Fig. 5–3c. The pin passes through a hole in the beam and two leaves which 

are fixed to the ground. Here the pin can prevent translation of the beam 

in any direction f, Fig. 5–3d, and so the pin must exert a force F on the 

beam in the opposite direction. For purposes of analysis, it is generally 

easier to represent this resultant force F by its two rectangular components 

Fx and Fy, Fig. 5–3e. If Fx and Fy are known, then F and f can be calculated.

The most restrictive way to support the beam would be to use a fixed 
support as shown in Fig. 5–3f. This support will prevent both translation 
and rotation of the beam. To do this a force and couple moment must be 

developed on the beam at its point of connection, Fig. 5–3g. As in the 

case of the pin, the force is usually represented by its rectangular 

components Fx and Fy.
Table 5–1 lists other common types of supports for bodies subjected to 

coplanar force systems. (In all cases the angle u is assumed to be known.) 

Carefully study each of the symbols used to represent these supports and 

the types of reactions they exert on their contacting members. Fig. 5–3

(a)

roller

(b)

F

(c)

pin

pin
member

leaves

or

Fy

Fx

F

(e)(d)

f

(f)

fixed support

Fy

Fx

M

(g)
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(3)

Types of Connection Reaction Number of Unknowns

One unknown. The reaction is a tension force which acts
away from the member in the direction of the cable.

One unknown. The reaction is a force which acts along
the axis of the link.

One unknown. The reaction is a force which acts
perpendicular to the surface at the point of contact.

One unknown. The reaction is a force which acts
perpendicular to the slot.

One unknown. The reaction is a force which acts
perpendicular to the surface at the point of contact.

One unknown. The reaction is a force which acts
perpendicular to the surface at the point of contact.

One unknown. The reaction is a force which acts
perpendicular to the rod.

continued

(1)

cable

F

(2)

weightless link
F

roller F

or

(6)

roller or pin in
confined smooth slot

(4)

rocker

(5)

smooth contacting
 surface

F

F

F

(7)

or

or
F

F

F

TABLE 5–1 Supports for Rigid Bodies Subjected to Two-Dimensional Force Systems

member pin connected
to collar on smooth rod

u

u u
u

uu

u u

u

u

u

u

u u u

u

u
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Typical examples of actual supports are shown in the following sequence of photos. The numbers refer to the 

connection types in Table 5–1.

Types of Connection Reaction Number of Unknowns

Two unknowns. The reactions are two components of
force, or the magnitude and direction   of the resultant
force. Note that    and    are not necessarily equal [usually
not, unless the rod shown is a link as in (2)].

Three unknowns. The reactions are the couple moment 
and the two force components, or the couple moment and 
the magnitude and direction     of the resultant force.

Two  unknowns. The reactions are the couple moment 
and the force which acts perpendicular to the rod.

F

Fy

M

or

Fx

F

fixed support

Fy

Fx

F

or

M M

f

f

f

u

TABLE 5–1 Continued

member fixed connected
 to collar on smooth rod

smooth pin or hinge

(8)

(9)

(10)

u f

f

The cable exerts a force on the bracket 
in the direction of the cable. (1)

Typical pin support for a beam. (8) 
(© Russell C. Hibbeler)

The rocker support for this 
bridge girder allows horizontal 
movement so the bridge is free 
to expand and contract due to 
a change in temperature. (4)  
(© Russell C. Hibbeler)

This concrete girder 
rests on the ledge that 
is assumed to act as  
a smooth contacting 
surface. (5) (© Russell 
C. Hibbeler)

The floor beams of this 
building are welded 
together and thus form 
fixed connections. (10) 
(© Russell C. Hibbeler)

(©
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Internal Forces. As stated in Sec. 5.1, the internal forces that act 

between adjacent particles in a body always occur in collinear pairs such 

that they have the same magnitude and act in opposite directions (Newton’s 

third law). Since these forces cancel each other, they will not create an 

external effect on the body. It is for this reason that the internal forces should 

not be included on the free-body diagram if the entire body is to be 

considered. For example, the engine shown in Fig. 5–4a has a free-body 

diagram shown in Fig. 5–4b. The internal forces between all its connected 

parts, such as the screws and bolts, will cancel out because they form equal 

and opposite collinear pairs. Only the external forces T1 and T2, exerted by 

the chains and the engine weight W, are shown on the free-body diagram.

(a) (b)

W

T2 T1

G

Fig. 5–4

Weight and the Center of Gravity. When a body is within a 

gravitational field, then each of its particles has a specified weight. It was 

shown in Sec. 4.8 that such a system of forces can be reduced to a single 

resultant force acting through a specified point. We refer to this force 

resultant as the weight W of the body and to the location of its point of 

application as the center of gravity. The methods used for its determination 

will be developed in Chapter 9.

In the examples and problems that follow, if the weight of the body is 

important for the analysis, this force will be reported in the problem 

statement. Also, when the body is uniform or made from the same 

material, the center of gravity will be located at the body’s geometric 
center or centroid; however, if the body consists of a nonuniform 

distribution of material, or has an unusual shape, then the location of its 

center of gravity G will be given.

Idealized Models. When an engineer performs a force analysis of 

any object, he or she considers a corresponding analytical or idealized 

model that gives results that approximate as closely as possible the  

actual situation. To do this, careful choices have to be made so that 

selection of the type of supports, the material behavior, and the object’s 

dimensions can be justified. This way one can feel confident that any  
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design or analysis will yield results which can be trusted. In complex 

cases this process may require developing several different models of the 

object that must be analyzed. In any case, this selection process requires 

both skill and experience.

The following two cases illustrate what is required to develop a proper 

model. In Fig. 5–5a, the steel beam is to be used to support the three roof 

joists of a building. For a force analysis it is reasonable to assume the 

material (steel) is rigid since only very small deflections will occur when 

the beam is loaded. A bolted connection at A will allow for any slight 

rotation that occurs here when the load is applied, and so a pin can be 

considered for this support. At B a roller can be considered since this 

support offers no resistance to horizontal movement. Building code is 

used to specify the roof loading A so that the joist loads F can be 

calculated. These forces will be larger than any actual loading on the 

beam since they account for extreme loading cases and for dynamic or 

vibrational effects. Finally, the weight of the beam is generally neglected 

when it is small compared to the load the beam supports. The idealized 

model of the beam is therefore shown with average dimensions a, b, c, 

and d in Fig. 5–5b.

As a second case, consider the lift boom in Fig. 5–6a. By inspection, it is 

supported by a pin at A and by the hydraulic cylinder BC, which can be 

approximated as a weightless link. The material can be assumed rigid, 

and with its density known, the weight of the boom and the location of its 

center of gravity G are determined. When a design loading P is specified, 

the idealized model shown in Fig. 5–6b can be used for a force analysis. 

Average dimensions (not shown) are used to specify the location of the 

loads and the supports.

Idealized models of specific objects will be given in some of the 

examples throughout the text. It should be realized, however, that each 

case represents the reduction of a practical situation using simplifying 

assumptions like the ones illustrated here.EXAMPLE 5.3 

(a)

BA

F F F

A B

(b)

a b c d

Fig. 5–5 (© Russell C. Hibbeler)

(a)

A

C

B

Fig. 5–6 (© Russell C. Hibbeler)

(b)

B

C

G

A

P



214  CHAPTER 5  EQUIL IBR IUM OF A RIG ID BODY

5

Important Points

  No equilibrium problem should be solved without first drawing 
the free-body diagram, so as to account for all the forces and 

couple moments that act on the body.

  If a support prevents translation of a body in a particular direction, 

then the support, when it is removed, exerts a force on the body 

in that direction.

  If rotation is prevented, then the support, when it is removed, 

exerts a couple moment on the body.

  Study Table 5–1.

  Internal forces are never shown on the free-body diagram since they 

occur in equal but opposite collinear pairs and therefore cancel out.

  The weight of a body is an external force, and its effect is 

represented by a single resultant force acting through the body’s 

center of gravity G.

  Couple moments can be placed anywhere on the free-body 

diagram since they are free vectors. Forces can act at any point 

along their lines of action since they are sliding vectors.

Procedure for Analysis

To construct a free-body diagram for a rigid body or any group of bodies  

considered as a single system, the following steps should be performed:

Draw Outlined Shape.
Imagine the body to be isolated or cut “free” from its constraints and 

connections and draw (sketch) its outlined shape. Be sure to 

remove all the supports from the body.

Show All Forces and Couple Moments.
Identify all the known and unknown external forces and couple 

moments that act on the body. Those generally encountered are due to 

(1) applied loadings, (2) reactions occurring at the supports or at points 

of contact with other bodies (see Table 5–1), and (3) the weight of the 

body. To account for all these effects, it may help to trace over the 

boundary, carefully noting each force or couple moment acting on it.

Identify Each Loading and Give Dimensions.
The forces and couple moments that are known should be labeled with 

their proper magnitudes and directions. Letters are used to represent 

the magnitudes and direction angles of forces and couple moments that 

are unknown. Establish an x, y coordinate system so that these 

unknowns, Ax, Ay, etc., can be identified. Finally, indicate the dimensions 

of the body necessary for calculating the moments of forces.
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Draw the free-body diagram of the uniform beam shown in Fig. 5–7a. 

The beam has a mass of 100 kg.

EXAMPLE   5.1 

(a)

2 m
1200 N

6 m

A

SOLUTION
The free-body diagram of the beam is shown in Fig. 5–7b. Since the 

support at A is fixed, the wall exerts three reactions on the beam, 

denoted as Ax, Ay, and MA . The magnitudes of these reactions are 

unknown, and their sense has been assumed. The weight of the beam, 

W = 100(9.81) N = 981 N, acts through the beam’s center of gravity G, 

which is 3 m from A since the beam is uniform.

Fig. 5–7

Ay

Ax

2 m
1200 N

3 m

A

981 N

MA

G

Effect of applied
force acting on beam

Effect of gravity (weight)
acting on beam

Effect of fixed
support acting
on beam

(b)

y

x
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Draw the free-body diagram of the foot lever shown in Fig. 5–8a.  

The operator applies a vertical force to the pedal so that the spring is 

stretched 1.5 in. and the force on the link at B is 20 lb.

EXAMPLE   5.2 

F

30 lb

5 in.

1.5 in.

1 in.

A

B

20 lb

Ay

Ax

(c)

F

5 in.

1.5 in.

1 in.

A

B

k � 20 lb/in.

(b)

A

B

(a)

Fig. 5–8 (© Russell C. Hibbeler)

SOLUTION
By inspection of the photo the lever is loosely bolted to the frame at A 

and so this bolt acts as a pin. (See (8) in Table 5–1.) Although not 

shown here the link at B is pinned at both ends and so it is like (2) in 

Table 5–1. After making the proper measurements, the idealized 

model of the lever is shown in Fig. 5–8b. From this, the free-body 

diagram is shown in Fig. 5–8c. Since the pin at A is removed, it exerts 

force components Ax and Ay on the lever. The link exerts a force of 

20  lb, acting in the direction of the link. In addition the spring also 

exerts a horizontal force on the lever. If the stiffness is measured and 

found to be k = 20 lb>in., then since the stretch s = 1.5 in., using 

Eq.  3–2, Fs = ks = 20 lb>in. (1.5 in.) = 30 lb. Finally, the operator’s 

shoe applies a vertical force of F on the pedal. The dimensions of the 

lever are also shown on the free-body diagram, since this information 

will be useful when calculating the moments of the forces. As usual, 

the senses of the unknown forces at A have been assumed. The correct 

senses will become apparent after solving the equilibrium equations.
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Two smooth pipes, each having a mass of 300 kg, are supported by the 

forked tines of the tractor in Fig. 5–9a. Draw the free-body diagrams 

for each pipe and both pipes together.

EXAMPLE    5.3

(a) (b)

30�

A

B

0.35 m

0.35 m
30�

A
30�

30�

Effect of gravity
(weight) acting on A

Effect of sloped
fork acting on A

Effect of B acting on A

Effect of sloped
blade acting on A

T

F

R

2943 N

(c)

Fig. 5–9

30�

B

30�

P

R 2943 N

(d)

30�

A

30�

T

F

2943 N

(e)

30�

B

P

2943 N

SOLUTION
The idealized model from which we must draw the free-body  

diagrams is shown in Fig. 5–9b. Here the pipes are identified, the 

dimensions have been added, and the physical situation reduced to its 

simplest form.

Removing the surfaces of contact, the free-body diagram for pipe A is 

shown in Fig. 5–9c. Its weight is W = 300(9.81) N = 2943 N. Assuming 

all contacting surfaces are smooth, the reactive forces T, F, R act in a 

direction normal to the tangent at their surfaces of contact.

The free-body diagram of the isolated pipe B is shown in Fig. 5–9d. 

Can you identify each of the three forces acting on this pipe? In 

particular, note that R, representing the force of A on B, Fig. 5–9d, is 

equal and opposite to R representing the force of B on A, Fig. 5–9c. 

This is a consequence of Newton’s third law of motion.

The free-body diagram of both pipes combined (“system”) is shown 

in Fig. 5–9e. Here the contact force R, which acts between A and B, is 

considered as an internal force and hence is not shown on the  

free-body diagram. That is, it represents a pair of equal but opposite 

collinear forces which cancel each other.

(© Russell C. Hibbeler)
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Draw the free-body diagram of the unloaded platform that is 

suspended off the edge of the oil rig shown in Fig. 5–10a. The platform 

has a mass of 200 kg.

(a)

Fig. 5–10 (© Russell C. Hibbeler)

SOLUTION
The idealized model of the platform will be considered in two 

dimensions because by observation the loading and the dimensions 

are all symmetrical about a vertical plane passing through its center, 

Fig. 5–10b. The connection at A is considered to be a pin, and the cable 

supports the platform at B. The direction of the cable and average 

dimensions of the platform are listed, and the center of gravity G has 

been determined. It is from this model that we have drawn the  

free-body diagram shown in Fig. 5–10c. The platform’s weight is 

200(9.81) = 1962 N. The supports have been removed, and the force 

components Ax and Ay along with the cable force T represent the 

reactions that both pins and both cables exert on the platform,  

Fig. 5–10a. As a result, half their magnitudes are developed on each 

side of the platform.

EXAMPLE   5.4 

1.40 m

1 m

70�

0.8 m

(b)

A
G

B

1.40 m

1 m

70�

0.8 m

1962 N

(c)

Ax

Ay

G

A

T
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PROBLEMS

5–1. Draw the free-body diagram for the following 

problems.

a) The cantilevered beam in Prob. 5–10.

b) The beam in Prob. 5–11.

c) The beam in Prob. 5–12.

d) The beam in Prob. 5–14.

5–2. Draw the free-body diagram for the following 

problems.

a) The truss in Prob. 5–15.

b) The beam in Prob. 5–16.

c) The man and load in Prob. 5–17.

d) The beam in Prob. 5–18.

5–3. Draw the free-body diagram for the following 

problems.

a) The man and beam in Prob. 5–19.

b) The rod in Prob. 5–20.

c) The rod in Prob. 5–21.

d) The beam in Prob. 5–22.

*5–4. Draw the free-body diagram for the following 

problems.

a) The beam in Prob. 5–25.

b) The crane and boom in Prob. 5–26.

c) The bar in Prob. 5–27.

d) The rod in Prob. 5–28.

5–5. Draw the free-body diagram for the following 

problems.

a) The boom in Prob. 5–32.

b) The jib crane in Prob. 5–33.

c) The smooth pipe in Prob. 5–35.

d) The beam in Prob. 5–36.

5–6. Draw the free-body diagram for the following 

problems.

a) The jib crane in Prob. 5–37.

b) The bar in Prob. 5–39.

c) The bulkhead in Prob. 5–41.

d) The boom in Prob. 5–42.

5–7. Draw the free-body diagram for the following 

problems.

a) The rod in Prob. 5–44.

b) The hand truck and load when it is lifted in Prob. 5–45.

c) The beam in Prob. 5–47.

d) The cantilever footing in Prob. 5–51.

*5–8. Draw the free-body diagram for the following 

problems.

a) The beam in Prob. 5–52.

b) The boy and diving board in Prob. 5–53.

c) The rod in Prob. 5–54.

d) The rod in Prob. 5–56.

5–9. Draw the free-body diagram for the following 

problems.

a) The beam in Prob. 5–57.

b) The rod in Prob. 5–59.

c) The bar in Prob. 5–60.
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5.3 Equations of Equilibrium

In Sec. 5.1 we developed the two equations which are both necessary and 

sufficient for the equilibrium of a rigid body, namely, �F = 0 and 

�MO = 0. When the body is subjected to a system of forces, which all lie 

in the x–y plane, then the forces can be resolved into their x and y 

components. Consequently, the conditions for equilibrium in two 

dimensions are

 

�Fx =   0

�Fy =   0

�MO = 0

 (5–2)

Here �Fx and �Fy represent, respectively, the algebraic sums of the x and y  

components of all the forces acting on the body, and �MO represents 

the algebraic sum of the couple moments and the moments of all the 

force components about the z axis, which is perpendicular to the x–y 

plane and passes through the arbitrary point O.

Alternative Sets of Equilibrium Equations. Although  

Eqs. 5–2 are most often used for solving coplanar equilibrium problems, 

two alternative sets of three independent equilibrium equations may also 

be used. One such set is

 

�Fx =   0

�MA =   0

�MB = 0

 (5–3)

When using these equations it is required that a line passing through 

points A and B is not parallel to the y axis. To prove that Eqs. 5–3 provide 

the conditions for equilibrium, consider the free-body diagram of the 

plate shown in Fig. 5–11a. Using the methods of Sec. 4.7, all the forces 

on  the free-body diagram may be replaced by an equivalent resultant 

force  FR = �F, acting at point A, and a resultant couple moment 

1MR2A = �MA, Fig. 5–11b. If �MA = 0 is satisfied, it is necessary that 

1MR2A = 0. Furthermore, in order that FR satisfy �Fx = 0, it must have 

no component along the x axis, and therefore FR must be parallel to the  

y axis, Fig. 5–11c. Finally, if it is required that �MB = 0, where B does not 

lie on the line of action of FR, then FR = 0. Since Eqs. 5–3 show that both 

of these resultants are zero, indeed the body in Fig. 5–11a must be in 

equilibrium.

B

A

C

(a)

F4

F3

F1

F2

x

y

Fig. 5–11

A

(MR)
A

FR

(b)

B C

(c)

A

FR

B C
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A second alternative set of equilibrium equations is

 

�MA =   0

�MB =   0

�MC = 0

  (5–4)

Here it is necessary that points A, B, and C do not lie on the same line. To 

prove that these equations, when satisfied, ensure equilibrium, consider 

again the free-body diagram in Fig. 5–11b. If �MA = 0 is to be satisfied, then 

1MR2A = 0. �MC = 0 is satisfied if the line of action of FR passes through 

point C as shown in Fig. 5–11c. Finally, if we require �MB = 0, it is necessary 

that FR = 0, and so the plate in Fig. 5–11a must then be in equilibrium.

Procedure for Analysis

Coplanar force equilibrium problems for a rigid body can be solved 

using the following procedure.

Free-Body Diagram.
  Establish the x, y coordinate axes in any suitable orientation.

  Remove all supports and draw an outlined shape of the body.

  Show all the forces and couple moments acting on the body.

  Label all the loadings and specify their directions relative to the x 

or y axis. The sense of a force or couple moment having an 

unknown magnitude but known line of action can be assumed.

  Indicate the dimensions of the body necessary for computing the 

moments of forces.

Equations of Equilibrium.
  Apply the moment equation of equilibrium, �MO = 0, about a 

point (O) that lies at the intersection of the lines of action of two 

unknown forces. In this way, the moments of these unknowns are 

zero about O, and a direct solution for the third unknown can be 

determined.

  When applying the force equilibrium equations, �Fx = 0 and 

�Fy = 0, orient the x and y axes along lines that will provide the 

simplest resolution of the forces into their x and y components.

  If the solution of the equilibrium equations yields a negative 

scalar for a force or couple moment magnitude, this indicates that 

the sense is opposite to that which was assumed on the free-body 

diagram.
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EXAMPLE   5.5 

Determine the horizontal and vertical components of reaction on the 

beam caused by the pin at B and the rocker at A as shown in Fig. 5–12a. 

Neglect the weight of the beam.

(a)

600 N

D

100 N

A B

200 N

2 m 3 m 2 m

0.2 m

By

2 m

600 sin 45�  N

3 m 2 m

A
B

200 N

600 cos 45�  N

Ay

Bx
x

y

(b)

100 N

0.2 m

D

SOLUTION
Free-Body Diagram. The supports are removed, and the free-body 

diagram of the beam is shown in Fig. 5–12b. (See Example 5.1.) For 

simplicity, the 600-N force is represented by its x and y components as 

shown in Fig. 5–12b.

Equations of Equilibrium. Summing forces in the x direction yields

S+ �Fx = 0;   600 cos 45� N - Bx = 0

 Bx = 424 N  Ans.

A direct solution for Ay can be obtained by applying the moment 

equation �MB = 0 about point B.

a+�MB = 0;  100 N (2 m) + (600 sin 45� N)(5 m)

- (600 cos 45� N)(0.2 m) - A y(7 m) = 0

A y = 319 N  Ans.

Summing forces in the y direction, using this result, gives

+ c�Fy = 0;  319 N - 600 sin 45� N - 100 N - 200 N + By = 0

By = 405 N  Ans.

NOTE: Remember, the support forces in Fig. 5–12b are the result of 

pins that act on the beam. The opposite forces act on the pins. For 

example, Fig. 5–12c shows the equilibrium of the pin at A and the 

rocker.

Fig. 5–12

319 N

319 N

(c)

A

319 N

319 N
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EXAMPLE  5.6 

The cord shown in Fig. 5–13a supports a force of 100 lb and wraps 

over the frictionless pulley. Determine the tension in the cord at C and 

the horizontal and vertical components of reaction at pin A.

100 lb

0.5 ft

� 30�

C

(a)

A

u

T100 lb

30�

p

Ax

Ay

A

(b)

p

Ax

Ay

A

T100 lb

0.5 ft

� 30�

(c)

x

y

u

SOLUTION
Free-Body Diagrams. The free-body diagrams of the cord and 

pulley are shown in Fig. 5–13b. Note that the principle of action, equal 

but opposite reaction must be carefully observed when drawing each 

of these diagrams: the cord exerts an unknown load distribution p on 

the pulley at the contact surface, whereas the pulley exerts an equal but 

opposite effect on the cord. For the solution, however, it is simpler to 

combine the free-body diagrams of the pulley and this portion of the 

cord, so that the distributed load becomes internal to this “system” and 

is therefore eliminated from the analysis, Fig. 5–13c.

Equations of Equilibrium. Summing moments about point A to 

eliminate Ax and Ay, Fig. 5–13c, we have

a+�MA = 0;  100 lb (0.5 ft) - T  (0.5 ft) = 0 

T = 100 lb  Ans.

Using this result,

S+ �Fx = 0;  -A x + 100 sin 30� lb = 0

A x = 50.0 lb  Ans.

+ c�Fy = 0;  A y - 100 lb - 100 cos 30� lb = 0

A y = 187 lb  Ans.

NOTE: From the moment equation, it is seen that the tension remains 

constant as the cord passes over the pulley. (This of course is true for any 
angle u at which the cord is directed and for any radius r of the pulley.)

Fig. 5–13
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EXAMPLE  5.7 

The member shown in Fig. 5–14a is pin connected at A and rests 

against a smooth support at B. Determine the horizontal and vertical 

components of reaction at the pin A.

SOLUTION
Free-Body Diagram. As shown in Fig. 5–14b, the supports are 

removed and the reaction NB is perpendicular to the member at B. Also, 

horizontal and vertical components of reaction are represented at A. The 

resultant of the distributed loading is 1
2 (1.5  m)(80 N>m) = 60 N. It acts 

through the centroid of the triangle, 1 m from A as shown.

Equations of Equilibrium. Summing moments about A, we obtain 

a direct solution for NB,

a+�MA = 0; -90 N # m - 60 N(1 m) + NB(0.75 m) = 0 

NB = 200 N
Using this result,

S+ �Fx = 0;      A x - 200 sin 30� N = 0

A x = 100 N  Ans.

+ c�Fy = 0;    A y - 200 cos 30� N - 60 N = 0

A y = 233 N  Ans.

0.75 m

1.5 m

A

B

(a)

80 N/m

30�

90 N � m

NB

0.75 m
1 m

60 N

A

Ax

Ay

(b)

x

y

30�

30�

90 N � m

Fig. 5–14
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EXAMPLE  5.8 

The box wrench in Fig. 5–15a is used to tighten the bolt at A. If the 

wrench does not turn when the load is applied to the handle, determine 

the torque or moment applied to the bolt and the force of the wrench 

on the bolt.

SOLUTION
Free-Body Diagram. The free-body diagram for the wrench is 

shown in Fig. 5–15b. Since the bolt acts as a “fixed support,” when it is 

removed, it exerts force components Ax and Ay and a moment MA  on 

the wrench at A.

Equations of Equilibrium.

S+ �Fx = 0;   A x - 521 5
132 N + 30 cos 60� N = 0

A x = 5.00 N  Ans.

+ c�Fy = 0;   A y - 52112
132 N - 30 sin 60� N = 0

A y = 74.0 N  Ans.

a+�MA = 0; MA - 352112
132N4  (0.3 m) - (30 sin 60� N)(0.7 m) = 0

  MA = 32.6 N # m  Ans.

Note that MA  must be included in this moment summation. This couple 

moment is a free vector and represents the twisting resistance of the 

bolt on the wrench. By Newton’s third law, the wrench exerts an equal 

but opposite moment or torque on the bolt. Furthermore, the resultant 

force on the wrench is

 FA = 2(5.00)2 + (74.0)2 = 74.1 N Ans.

NOTE: Although only three independent equilibrium equations can be 

written for a rigid body, it is a good practice to check the calculations 

using a fourth equilibrium equation. For example, the above 

computations may be verified in part by summing moments about 

point C:

a+�MC = 0; 352112
132N4  (0.4 m) + 32.6 N # m - 74.0 N(0.7 m) = 0

19.2 N # m + 32.6 N # m - 51.8 N # m = 0

300 mm 400 mm

13 12

5

B C
60�

52 N 30 N
(a)

A

C

0.3 m 0.4 m

13 12
5

60�

52 N 30 N

(b)

Ay

MA

Ax
y

x

Fig. 5–15
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EXAMPLE  5.9 

Determine the horizontal and vertical components of reaction on the 

member at the pin A, and the normal reaction at the roller B in Fig. 5–16a.

SOLUTION
Free-Body Diagram. All the supports are removed and so the   

free-body diagram is shown in Fig. 5–16b. The pin at A exerts two 

components of reaction on the member, Ax and Ay.

3 ft

A

B

3 ft

2 ft

(a)

30�

750 lb

A

B

2 ft

3 ft 3 ft

750 lb

Ax

Ay

NB
30�

y

x

(b)

Equations of Equilibrium. The reaction NB can be obtained directly 

by summing moments about point A, since Ax and Ay produce no 

moment about A.

a+�MA =  0;

 [NB cos 30�](6 ft) - [NB sin 30�](2 ft) - 750 lb(3 ft) = 0

  NB = 536.2 lb = 536 lb  Ans.

Using this result,

 S+ � Fx = 0; A x - (536.2 lb) sin 30� = 0

  A x = 268 lb  Ans.

+  c�Fy = 0; A y + (536.2 lb) cos 30� - 750 lb = 0

  A y = 286 lb  Ans.

Details of the equilibrium of the pin at A are shown in Fig. 5–16c.

Fig. 5–16

286 lb

268 lb

268 lb

286 lb

member
on pin

support
on pin

(c)
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The uniform smooth rod shown in Fig. 5–17a is subjected to a force 

and couple moment. If the rod is supported at A by a smooth wall and 

at B and C either at the top or bottom by rollers, determine the 

reactions at these supports. Neglect the weight of the rod.

EXAMPLE  5.10 

(a)

A

2 m

300 N

4 m

2 m

C

B

2 m

(b)

2 m

300 N

4000 N � m

4 m

2 m
30�

30�

Cy¿

By¿

30� 30�

Ax

y y¿

x

x¿

30�

Fig. 5–17

SOLUTION
Free-Body Diagram. Removing the supports as shown in Fig. 5–17b, 

all the reactions act normal to the surfaces of contact since these surfaces 

are smooth. The reactions at B and C are shown acting in the positive y� 
direction. This assumes that only the rollers located on the bottom of the 

rod are used for support.

Equations of Equilibrium. Using the x, y coordinate system in  

Fig. 5–17b, we have

S+ �Fx = 0; Cy� sin 30� + By� sin 30� - A x = 0 (1)

+  c�Fy = 0; -300 N + Cy� cos 30� + By� cos 30� = 0 (2)

a+�MA = 0; -By�(2 m) + 4000 N # m - Cy�(6 m)

 + (300 cos 30� N)(8 m) = 0 (3)

When writing the moment equation, it should be noted that the line of 

action of the force component 300 sin 30° N passes through point A, 

and therefore this force is not included in the moment equation.

Solving Eqs. 2 and 3 simultaneously, we obtain

  By� = -1000.0 N = -1 kN  Ans.

  Cy� = 1346.4 N = 1.35 kN  Ans.

Since By� is a negative scalar, the sense of By� is opposite to that shown on 

the free-body diagram in Fig. 5–17b. Therefore, the top roller at B serves 

as the support rather than the bottom one. Retaining the negative sign 

for By� (Why?) and substituting the results into Eq. 1, we obtain

1346.4 sin 30� N + (-1000.0 sin 30� N) - A x = 0

 A x = 173 N  Ans.
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The uniform truck ramp shown in Fig. 5–18a has a weight of 400 lb 

and is pinned to the body of the truck at each side and held in the 

position shown by the two side cables. Determine the tension in the 

cables.

SOLUTION
The idealized model of the ramp, which indicates all necessary 

dimensions and supports, is shown in Fig. 5–18b. Here the center of 

gravity is located at the midpoint since the ramp is considered to be 

uniform.

Free-Body Diagram. Removing the supports from the idealized 

model, the ramp’s free-body diagram is shown in Fig. 5–18c.

Equations of Equilibrium. Summing moments about point A will 

yield a direct solution for the cable tension. Using the principle of 

moments, there are several ways of determining the moment of T 

about A. If we use x and y components, with T applied at B, we have

a+�MA = 0;  -T cos 20�(7 sin 30� ft) + T sin 20�(7 cos 30� ft)

 + 400 lb (5 cos 30� ft) = 0

T = 1425 lb

We can also determine the moment of T about A by resolving it into 

components along and perpendicular to the ramp at B. Then the 

moment of the component along the ramp will be zero about A, so that

a+�MA = 0;  -T sin 10�(7 ft) + 400 lb (5 cos 30� ft) = 0

T = 1425 lb

Since there are two cables supporting the ramp,

 T � =
T

2
= 712 lb  Ans.

NOTE: As an exercise, show that A x = 1339 lb and A y = 887 lb.

EXAMPLE  5.11 

(c)

G

B

A

Ay

Ax

T

30�

2 ft
10�

20�

5 ft
400 lb

x

y

Fig. 5–18

(a)

(b)

G

B

A
30�

20�

2 ft

5 ft

(© Russell C. Hibbeler)
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EXAMPLE  5.12 

A

B

(a)

1.5 m 1.5 m

1 m

45�

900 N

500 N � m

A

B

Ax

MA

900 N

NB

45�500 N � m

1 m

1.5 m 1.5 m

y

x

(b)

Fig. 5–19

SOLUTION
Free-Body Diagram. Removing the supports, the free-body diagram 

of the member is shown in Fig. 5–19b. The collar exerts a horizontal 

force Ax and moment MA  on the member. The reaction NB of the roller 

on the member is vertical.

Equations of Equilibrium. The forces A x and NB can be determined 

directly from the force equations of equilibrium.

S+ � Fx = 0; A x = 0  Ans.

+ c�Fy = 0; NB - 900 N = 0

  NB = 900 N  Ans.

The moment MA  can be determined by summing moments either 

about point A or point B.

a+�MA =  0;

MA - 900 N(1.5 m) - 500 N # m + 900 N [3 m + (1 m) cos 45�] = 0

 MA = -1486 N # m = 1.49 kN # mb Ans.

or

a+�MB = 0; MA + 900 N [1.5 m + (1 m) cos 45�] - 500 N # m = 0

  MA = -1486 N # m = 1.49 kN # mb Ans.

The negative sign indicates that MA  has the opposite sense of rotation 

to that shown on the free-body diagram.

Determine the support reactions on the member in Fig. 5–19a. The 

collar at A is fixed to the member and can slide vertically along the 

vertical shaft.
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6.4 The Method of Sections

When we need to find the force in only a few members of a truss, we can 

analyze the truss using the method of sections. It is based on the principle 

that if the truss is in equilibrium then any segment of the truss is also in 

equilibrium. For example, consider the two truss members shown on the left 

in Fig. 6–14. If the forces within the members are to be determined, then an 

imaginary section, indicated by the blue line, can be used to cut each member 

into two parts and thereby “expose” each internal force as “external” to the 

free-body diagrams shown on the right. Clearly, it can be seen that equilibrium 

requires that the member in tension (T) be subjected to a “pull,” whereas 

the member in compression (C) is subjected to a “push.”

The method of sections can also be used to “cut” or section the members 

of an entire truss. If the section passes through the truss and the free-body 

diagram of either of its two parts is drawn, we can then apply the equations 

of equilibrium to that part to determine the member forces at the “cut 

section.” Since only three independent equilibrium equations (�Fx = 0, 
�Fy = 0, �MO = 0) can be applied to the free-body diagram of any 

segment, then we should try to select a section that, in general, passes 

through not more than three members in which the forces are unknown. 

For example, consider the truss in Fig. 6–15a. If the forces in members BC, 

GC, and GF are to be determined, then section aa would be appropriate. 

The free-body diagrams of the two segments are shown in Figs. 6–15b and 

6–15c. Note that the line of action of each member force is specified from 

the geometry of the truss, since the force in a member is along its axis. Also, 

the member forces acting on one part of the truss are equal but opposite to 

those acting on the other part—Newton’s third law. Members BC and GC 

are assumed to be in tension since they are subjected to a “pull,” whereas 

GF in compression since it is subjected to a “push.”

The three unknown member forces FBC, FGC, and FGF can be obtained by 

applying the three equilibrium equations to the free-body diagram in 

Fig. 6–15b. If, however, the free-body diagram in Fig. 6–15c is considered, 

the three support reactions Dx, Dy and Ex will have to be known, because 

only three equations of equilibrium are available. (This, of course, is done in 

the usual manner by considering a free-body diagram of the entire truss.)

Tension

T

T

T

Internal
tensile
forces

T

T

T

C

Compression

C

Internal
compressive
forces

C

C

C

C

Fig. 6–14

B

2 m

1000 N

2 m 2 m

C D

G F E
A

2 m

a

a

Fig. 6–15
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When applying the equilibrium equations, we should carefully consider 

ways of writing the equations so as to yield a direct solution for each of 

the unknowns, rather than having to solve simultaneous equations. For 

example, using the truss segment in Fig. 6–15b and summing moments 

about C would yield a direct solution for FGF since FBC and FGC create 

zero moment about C. Likewise, FBC can be directly obtained by summing 

moments about G. Finally, FGC can be found directly from a force 

summation in the vertical direction since FGF and FBC have no vertical 

components. This ability to determine directly the force in a particular 

truss member is one of the main advantages of using the method of 

sections.*

As in the method of joints, there are two ways in which we can 

determine the correct sense of an unknown member force:

The correct sense of an unknown member force can in many cases 

be determined “by inspection.” For example, FBC is a tensile force as 

represented in Fig. 6–15b since moment equilibrium about G 

requires that FBC create a moment opposite to that of the 1000-N 

force. Also, FGC is tensile since its vertical component must balance 

the 1000-N force which acts downward. In more complicated cases, 

the sense of an unknown member force may be assumed. If the 

solution yields a negative scalar, it indicates that the force’s sense is 

opposite to that shown on the free-body diagram.

Always assume that the unknown member forces at the cut section 

are tensile forces, i.e., “pulling” on the member. By doing this, the 

numerical solution of the equilibrium equations will yield positive 
scalars for members in tension and negative scalars for members in 
compression.

The forces in selected members of 
this Pratt truss can readily be deter-
mined using the method of sections. 
(© Russell C. Hibbeler)

*Notice that if the method of joints were used to determine, say, the force in member 

GC, it would be necessary to analyze joints A, B, and G in sequence.

2 m

1000 N

2 m

2 m

CFBC

45�

FGC

G

(b)

FGF

 (c)

2 m

2 m

45�

C

Dy

Dx

Ex

FGC

FBC

FGF

G

Fig. 6–15 (cont.)
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Simple trusses are often used 
in the construction of large 
cranes in order to reduce the 
weight of the boom and tower. 
(© Russell C. Hibbeler)

Important Point

  If a truss is in equilibrium, then each of its segments is in 

equilibrium. The internal forces in the members become external 

forces when the free-body diagram of a segment of the truss is 

drawn. A force pulling on a member causes tension in the 

member, and a force pushing on a member causes compression.

Procedure for Analysis

The forces in the members of a truss may be determined by the 

method of sections using the following procedure.

Free-Body Diagram.
  Make a decision on how to “cut” or section the truss through the 

members where forces are to be determined.

  Before isolating the appropriate section, it may first be necessary 

to determine the truss’s support reactions. If this is done then the 

three equilibrium equations will be available to solve for member 

forces at the section.

  Draw the free-body diagram of that segment of the sectioned 

truss which has the least number of forces acting on it.

  Use one of the two methods described above for establishing the 

sense of the unknown member forces.

Equations of Equilibrium.
  Moments should be summed about a point that lies at the 

intersection of the lines of action of two unknown forces, so that 

the third unknown force can be determined directly from the 

moment equation.

  If two of the unknown forces are parallel, forces may be summed 

perpendicular to the direction of these unknowns to determine 

directly the third unknown force.
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EXAMPLE   6.5

Determine the force in members GE, GC, and BC of the truss shown 

in Fig. 6–16a. Indicate whether the members are in tension or 

compression.

SOLUTION
Section aa in Fig. 6–16a has been chosen since it cuts through the three 

members whose forces are to be determined. In order to use the 

method of sections, however, it is first necessary to determine  

the external reactions at A or D. Why? A free-body diagram of  

the entire truss is shown in Fig. 6–16b. Applying the equations of 

equilibrium, we have

S+ �Fx = 0; 400 N - A x = 0 A x = 400 N 

a+�MA = 0; -1200 N(8 m) - 400 N(3 m) + Dy(12 m) = 0 

 Dy = 900 N

+ c�Fy = 0; A y - 1200 N + 900 N = 0 A y = 300 N

Free-Body Diagram. For the analysis the free-body diagram of the 

left portion of the sectioned truss will be used, since it involves the least 

number of forces, Fig. 6–16c.

Equations of Equilibrium. Summing moments about point G 

eliminates FGE and FGC and yields a direct solution for FBC.

a+�MG = 0; -300 N(4 m) - 400 N(3 m) + FBC (3 m) = 0 

 FBC = 800 N (T) Ans.

In the same manner, by summing moments about point C we obtain 

a direct solution for FGE.

a+�MC = 0; -300 N(8 m) + FGE (3 m) = 0

 FGE = 800 N (C) Ans.

Since FBC and FGE have no vertical components, summing forces in 

the y direction directly yields FGC, i.e.,

+ c�Fy = 0;  300 N - 3
5 FGC = 0

 FGC = 500 N (T) Ans.

NOTE: Here it is possible to tell, by inspection, the proper direction for 

each unknown member force. For example, �MC = 0 requires FGE to 

be compressive because it must balance the moment of the 300-N 

force about C.

3 m

4 m

400 N
G

4 m

E

B C
DA

a

a

1200 N

(a)

4 m

3 m

8 m

400 N

DA

1200 N

(b)

Ax

Ay Dy
4 m

3 m

4 m
400 N

A

(c)

FGE

FGC

FBC

3
4

5

G

300 N

C

4 m

Fig. 6–16
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EXAMPLE   6.6

Determine the force in member CF of the truss shown in Fig. 6–17a. 

Indicate whether the member is in tension or compression. Assume 

each member is pin connected.

SOLUTION
Free-Body Diagram. Section aa in Fig. 6–17a will be used since this 

section will “expose” the internal force in member CF as “external” on 

the free-body diagram of either the right or left portion of the truss. It 

is first necessary, however, to determine the support reactions on either 

the left or right side. Verify the results shown on the free-body diagram 

in Fig. 6–17b.

The free-body diagram of the right portion of the truss, which is the 

easiest to analyze, is shown in Fig. 6–17c. There are three unknowns, 

FFG, FCF, and FCD.

Equations of Equilibrium. We will apply the moment equation 

about point O in order to eliminate the two unknowns FFG and FCD. 

The location of point O measured from E can be determined from 

proportional triangles, i.e., 4>(4 + x) = 6>(8 + x), x = 4 m. Or, 

stated in another manner, the slope of member GF has a drop of 2 m 

to a horizontal distance of 4 m. Since FD is 4 m, Fig. 6–17c, then from 

D to O the distance must be 8 m.

An easy way to determine the moment of FCF about point O is to 

use the principle of transmissibility and slide FCF to point C, and 

then resolve FCF into its two rectangular components. We have

a+�MO = 0;

 -FCF sin 45�(12 m) + (3 kN)(8 m) - (4.75 kN)(4 m) = 0

 FCF = 0.589 kN (C) Ans.

4 m 4 m

4 m

2 m

3 kN

(c)

4.75 kN

D E

F

x

6 m

45�

CFCF cos 45�

FCF sin 45�

FCF

FFG

FCD

O

G

G

H F

EA

B C

D

3 kN5 kN

4 m

2 m

(a)

a

a
4 m 4 m4 m 4 m

4 m

5 kN 3 kN

(b)

8 m

3.25 kN 4.75 kN

4 m

Fig. 6–17



296  CHAPTER 6  STRUCTURAL ANALYS IS

6

EXAMPLE   6.7

Determine the force in member EB of the roof truss shown in Fig. 6–18a. 

Indicate whether the member is in tension or compression.

SOLUTION
Free-Body Diagrams. By the method of sections, any imaginary 

section that cuts through EB, Fig. 6–18a, will also have to cut through 

three other members for which the forces are unknown. For example, 

section aa cuts through ED, EB, FB, and AB. If a free-body diagram of 

the left side of this section is considered, Fig. 6–18b, it is possible to 

obtain FED by summing moments about B to eliminate the other three 

unknowns; however, FEB cannot be determined from the remaining two 

equilibrium equations. One possible way of obtaining FEB is first to 

determine FED from section aa, then use this result on section bb,  

Fig.  6–18a, which is shown in Fig. 6–18c. Here the force system is 

concurrent and our sectioned free-body diagram is the same as the 

free-body diagram for the joint at E.

Equations of Equilibrium. In order to determine the moment of 

FED about point B, Fig. 6–18b, we will use the principle of transmissibility 

and slide the force to point C and then resolve it into its rectangular 

components as shown. Therefore,

a+�MB = 0;  1000 N(4 m) + 3000 N(2 m) - 4000 N(4 m)

 + FED sin 30�(4 m) = 0

 FED = 3000 N (C)

Considering now the free-body diagram of section bb, Fig. 6–18c, we have

S+ �Fx = 0; FEF cos 30� - 3000 cos 30� N = 0

 FEF = 3000 N (C)

+ c�Fy = 0; 2(3000 sin 30� N) - 1000 N - FEB = 0

 FEB = 2000 N ( T ) Ans.

1000 N

1000 N

1000 N3000 N

A

B

C

D

E

F

a

a
bb

(a)

4000 N 2000 N

30�

2 m 2 m 2 m 2 m

1000 N

E

30�

y

x

FEB

FEF FED � 3000 N

(c)

30�

1000 N

1000 N

3000 N

B

C

E

4000 N FED sin 30�

30�

2 m 2 m 4 m

A FED cos 30�

FAB

FEB

FED

30�

(b)

FFB

Fig. 6–18
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F6–10. Determine the force in members EF, CF, and BC 

of the truss. State if the members are in tension or 

compression.

A
B C

D

E

F

G

30� 30�

6 ft 6 ft 6 ft

300 lb300 lb

f

Prob. F6–10

F6–11. Determine the force in members GF, GD, and CD 

of the truss. State if the members are in tension or 

compression.

A

B C D
E

F

G

H

2 m

2 m

1 m

2 m 2 m 2 m

10 kN
25 kN 15 kN

f

Prob. F6–11

F6–12. Determine the force in members DC, HI, and JI of 

the truss. State if the members are in tension or compression. 

Suggestion: Use the sections shown.

B

t
ss

t
C

A

D

I
K

H

EFG

1600 lb
1200 lb

9 ft

6 ft

6 ft

6 ft

12 ft

9 ft6 ft

6 ft6 ft

J

Prob. F6–12

FUNDAMENTAL PROBLEMS

F6–7. Determine the force in members BC, CF, and FE. 

State if the members are in tension or compression.

A DCB

G F E

4 ft

4 ft 4 ft 4 ft

600 lb 600 lb
800 lb

Prob. F6–7

F6–8. Determine the force in members LK, KC, and CD 
of the Pratt truss. State if the members are in tension or 

compression.

B C D
A

E F
G

HIJKL

2 m

3 m

2 m

20 kN 30 kN 40 kN

2 m 2 m 2 m 2 m

f

Prob. F6–8

F6–9. Determine the force in members KJ, KD, and CD 
of the Pratt truss. State if the members are in tension or 

compression.

B C D
A

E F
G

HIJKL

2 m

3 m

2 m

20 kN 30 kN 40 kN

2 m 2 m 2 m 2 m

f

Prob. F6–9

All problem solutions must include FBDs.
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All problem solutions must include FBDs.

6–27. Determine the force in members DC, HC, and HI of 

the truss, and state if the members are in tension or 

compression.

*6–28. Determine the force in members ED, EH, and GH 

of the truss, and state if the members are in tension or 

compression.

A

C

G

E D

H
F

I
B

2 m 2 m 2 m

1.5 m

50 kN
40 kN

40 kN

30 kN

1.5 m

1.5 m

Probs. 6–27/28

6–29. Determine the force in members HG, HE and DE 

of the truss, and state if the members are in tension or 

compression.

6–30. Determine the force in members CD, HI, and CH of 

the truss, and state if the members are in tension or 

compression.

A
B C D E F

GHIJK

4 ft

3 ft 3 ft3 ft3 ft3 ft

1500 lb1500 lb1500 lb1500 lb1500 lb

Probs. 6–29/30

6–31. Determine the force in members CD, CJ, KJ, and 

DJ of the truss which serves to support the deck of a bridge. 

State if these members are in tension or compression.

*6–32. Determine the force in members EI and JI of the 

truss which serves to support the deck of a bridge. State if 

these members are in tension or compression.

A G

HIJKL

FEDCB

4000 lb
8000 lb 5000 lb

9 ft 9 ft 9 ft 9 ft 9 ft 9 ft

12 ft

Probs. 6–31/32

6–33. The Howe truss is subjected to the loading shown. 

Determine the force in members GF, CD, and GC, and 

state if the members are in tension or compression.

6–34. The Howe truss is subjected to the loading shown. 

Determine the force in members GH, BC, and BG of the 

truss and state if the members are in tension or compression.

3 m

2 kN

5 kN

5 kN

2 m 2 m 2 m 2 m

A

B C D

F

G

H

E

2 kN

5 kN

Probs. 6–33/34

PROBLEMS
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6–39. Determine the force in members BC, HC, and HG. 

After the truss is sectioned use a single equation of 

equilibrium for the calculation of each force. State if these 

members are in tension or compression.

*6–40. Determine the force in members CD, CF, and CG 

and state if these members are in tension or compression.

A C D

H 

G

F 

4 kN

3 m

2 m

5 m5 m5 m 5 m

B E

4 kN
5 kN

3 kN
2 kN

Probs. 6–39/40

6–41. Determine the force developed in members FE, EB, 

and BC of the truss and state if these members are in 

tension or compression.

11 kN

B

A D

C

F E

22 kN

2 m 1.5 m

2 m

2 m

Prob. 6–41

6–35. Determine the force in members EF, CF, and BC, 

and state if the members are in tension or compression.

*6–36. Determine the force in members AF, BF, and BC, 

and state if the members are in tension or compression.

2 m

1.5 m

2 m

F

A

8 kN

4 kN E D

C

B

Probs. 6–35/36

6–37. Determine the force in members EF, BE, BC and 

BF of the truss and state if these members are in tension or 

compression. Set P1 = 9 kN, P2 = 12 kN, and P3 = 6 kN.

6–38. Determine the force in members BC, BE, and EF  

of the truss and state if these members are in tension  

or compression. Set P1 = 6 kN, P2 = 9 kN, and P3 = 12 kN.

F E

B
A

D

C

3 m

3 m 3 m 3 m

P1 P2

P3

Probs. 6–37/38
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6–46. Determine the force in members BC, CH, GH, and 

CG of the truss and state if the members are in tension or 

compression.

A
C D

H 

G

F 

8 kN

3 m

2 m

4 m4 m4 m 4 m
B

E

4 kN 5 kN

Prob. 6–46

6–47. Determine the force in members CD, CJ, and KJ 

and state if these members are in tension or compression.

6 kN

A

B C D E

G

I

H

F

12 m, 6 @ 2 m

J

K

L

6 kN

6 kN

6 kN

6 kN

3 m

Prob. 6–47

*6–48. Determine the force in members JK, CJ, and CD of 

the truss, and state if the members are in tension or compression.

6–49. Determine the force in members HI, FI, and EF of the 

truss, and state if the members are in tension or compression.

A
B C D FE

G

H

IJ

L

K

6 kN8 kN
5 kN4 kN

3 m

2 m 2 m 2 m 2 m 2 m 2 m

Probs. 6–48/49

6–42. Determine the force in members BC, HC, and HG. 

State if these members are in tension or compression.

6–43. Determine the force in members CD, CJ, GJ, and 

CG and state if these members are in tension or compression.

6 kN

12 kN

9 kN

4 kN 6 kN

1.5 m 1.5 m

2 m

1 m 1 m

1.5 m 1.5 m

A E
B

H

G

J

C D

Probs. 6–42/43

*6–44. Determine the force in members BE, EF, and CB, 

and state if the members are in tension or compression.

6–45. Determine the force in members BF, BG, and AB, 

and state if the members are in tension or compression.

4 m

4 m

4 m

4 m

B

A

C

F

G

E

D

10 kN

10 kN

5 kN

5 kN

Probs. 6–44/45



Chapter 6

In order to design the many parts of this boom assembly it is required that we 
know the forces that they must support. In this chapter we will show how to 

analyze such structures using the equations of equilibrium.

(© Tim Scrivener/Alamy)



Structural Analysis

CHAPTER OBJECTIVES

■ To show how to determine the forces in the members of a truss 
using the method of joints and the method of sections.

■ To analyze the forces acting on the members of frames and 
machines composed of pin-connected members.

6.1 Simple Trusses

A truss is a structure composed of slender members joined together at 

their end points. The members commonly used in construction consist 

of  wooden struts or metal bars. In particular, planar trusses lie in a 

single plane and are often used to support roofs and bridges. The truss 

shown in Fig. 6–1a is an example of a typical roof-supporting truss. In 

this  figure, the roof load is transmitted to the truss at the joints by 

means of a series of purlins. Since this loading acts in the same plane 

as the truss, Fig. 6–1b, the analysis of the forces developed in the truss 

members will be two-dimensional.

(a)

A

Purlin

(b)

Roof truss

Fig. 6–1
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(a)

Floor beam

Stringer
Deck

A

(b)

Bridge truss

Fig. 6–2

In the case of a bridge, such as shown in Fig. 6–2a, the load on the deck 

is first transmitted to stringers, then to floor beams, and finally to the 

joints of the two supporting side trusses. Like the roof truss, the bridge 

truss loading is also coplanar, Fig. 6–2b.

When bridge or roof trusses extend over large distances, a rocker or roller 

is commonly used for supporting one end, for example, joint A in Figs. 6–1a 

and 6–2a. This type of support allows freedom for expansion or contraction 

of the members due to a change in temperature or application of loads.

Assumptions for Design. To design both the members and the 

connections of a truss, it is necessary first to determine the force 

developed in each member when the truss is subjected to a given loading. 

To do this we will make two important assumptions:

  All loadings are applied at the joints. In most situations, such as 

for bridge and roof trusses, this assumption is true. Frequently the 

weight of the members is neglected because the force supported by 

each member is usually much larger than its weight. However, if the 

weight is to be included in the analysis, it is generally satisfactory to 

apply it as a vertical force, with half of its magnitude applied at each 

end of the member.

  The members are joined together by smooth pins. The joint connections 

are usually formed by bolting or welding the ends of the members to a 

common plate, called a gusset plate, as shown in Fig. 6–3a, or by simply 

passing a large bolt or pin through each of the members, Fig. 6–3b. We 

can assume these connections act as pins provided the center lines of 

the joining members are concurrent, as in Fig. 6–3.

(a)

Gusset
plate

(b)

Fig. 6–3
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T C

T C

CompressionTension
(b)(a)

Fig. 6–4

The use of metal gusset plates in the 
construction of these Warren trusses is 
clearly evident. (© Russell C. Hibbeler)

A B

C

P

Fig. 6–5

A

C
D

B

P

Fig. 6–6

Because of these two assumptions, each truss member will act as a two-
force member, and therefore the force acting at each end of the member 

will be directed along the axis of the member. If the force tends to elongate 

the member, it is a tensile force (T), Fig. 6–4a; whereas if it tends to shorten 

the member, it is a compressive force (C), Fig. 6–4b. In the actual design of 

a truss it is important to state whether the nature of the force is tensile or 

compressive. Often, compression members must be made thicker than 

tension members because of the buckling or column effect that occurs 

when a member is in compression.

Simple Truss. If three members are pin connected at their ends, 

they form a triangular truss that will be rigid, Fig. 6–5. Attaching two 

more members and connecting these members to a new joint D forms a 

larger truss, Fig. 6–6. This procedure can be repeated as many times as 

desired to form an even larger truss. If a truss can be constructed by 

expanding the basic triangular truss in this way, it is called a simple truss.
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6.2 The Method of Joints

In order to analyze or design a truss, it is necessary to determine the force 

in each of its members. One way to do this is to use the method of joints. 
This method is based on the fact that if the entire truss is in equilibrium, 

then each of its joints is also in equilibrium. Therefore, if the free-body 

diagram of each joint is drawn, the force equilibrium equations can then be 

used to obtain the member forces acting on each joint. Since the members 

of a plane truss are straight two-force members lying in a single plane, each 

joint is subjected to a force system that is coplanar and concurrent. As a 

result, only �Fx = 0 and �Fy = 0 need to be satisfied for equilibrium.

For example, consider the pin at joint B of the truss in Fig. 6–7a. 

Three forces act on the pin, namely, the 500-N force and the forces exerted 

by members BA and BC. The free-body diagram of the pin is shown in  

Fig. 6–7b. Here, FBA is “pulling” on the pin, which means that member BA 

is in tension; whereas FBC is “pushing” on the pin, and consequently 

member BC is in compression. These effects are clearly demonstrated by 

isolating the joint with small segments of the member connected to the 

pin, Fig. 6–7c. The pushing or pulling on these small segments indicates the 

effect of the member being either in compression or tension.

When using the method of joints, always start at a joint having at least 

one known force and at most two unknown forces, as in Fig. 6–7b. In this 

way, application of �Fx = 0 and �Fy = 0 yields two algebraic equations 

which can be solved for the two unknowns. When applying these 

equations, the correct sense of an unknown member force can be 

determined using one of two possible methods.

The correct sense of direction of an unknown member force can, in 

many cases, be determined “by inspection.” For example, FBC in 

Fig. 6–7b must push on the pin (compression) since its horizontal 

component, FBC sin 45�, must balance the 500-N force (�Fx = 0). 
Likewise, FBA  is a tensile force since it balances the vertical 

component, FBC cos 45� (�Fy = 0). In more complicated cases, the 

sense of an unknown member force can be assumed; then, after 

applying the equilibrium equations, the assumed sense can be 

verified from the numerical results. A positive answer indicates 

that the sense is correct, whereas a negative answer indicates that 

the sense shown on the free-body diagram must be reversed.

Always assume the unknown member forces acting on the joint’s 

free-body diagram to be in tension; i.e., the forces “pull” on the pin. 

If this is done, then numerical solution of the equilibrium equations 

will yield positive scalars for members in tension and negative scalars 
for members in compression. Once an unknown member force is 

found, use its correct magnitude and sense (T or C) on subsequent 

joint free-body diagrams.

B

2 m

500 N

A C

45�

2 m

(a)

B

45�

500 N

FBC (compression)FBA(tension)

(b)

FBA(tension)

B

45�

500 N

FBC (compression)

(c)

Fig. 6–7

The forces in the members of this simple 
roof truss can be determined using the 
method of joints. (© Russell C. Hibbeler) 
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Important Points

  Simple trusses are composed of triangular elements. The members 

are assumed to be pin connected at their ends and loads applied 

at the joints.

  If a truss is in equilibrium, then each of its joints is in equilibrium. 

The internal forces in the members become external forces when 

the free-body diagram of each joint of the truss is drawn. A force 

pulling on a joint is caused by tension in a member, and a force 

pushing on a joint is caused by compression.

Procedure for Analysis

The following procedure provides a means for analyzing a truss 

using the method of joints.

  Draw the free-body diagram of a joint having at least one known 

force and at most two unknown forces. (If this joint is at one of 

the supports, then it may be necessary first to calculate the 

external reactions at the support.)

  Use one of the two methods described above for establishing the 

sense of an unknown force.

  Orient the x and y axes such that the forces on the free-body 

diagram can be easily resolved into their x and y components and 

then apply the two force equilibrium equations �Fx = 0 and 

�Fy = 0. Solve for the two unknown member forces and verify 

their correct sense.

  Using the calculated results, continue to analyze each of the other 

joints. Remember that a member in compression “pushes” on the 

joint and a member in tension “pulls” on the joint. Also, be sure to 

choose a joint having at most two unknowns and at least one 

known force.
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EXAMPLE   6.1

Determine the force in each member of the truss shown in Fig. 6–8a 

and indicate whether the members are in tension or compression.

SOLUTION
Since we should have no more than two unknown forces at the joint 

and at least one known force acting there, we will begin our analysis at 

joint B.

Joint B. The free-body diagram of the joint at B is shown in Fig. 6–8b. 

Applying the equations of equilibrium, we have

S+ �Fx = 0; 500 N - FBC sin 45� = 0 FBC = 707.1 N (C) Ans.

+ c �Fy = 0; FBC cos 45� - FBA = 0 FBA = 500 N (T) Ans.

Since the force in member BC has been calculated, we can proceed to 

analyze joint C to determine the force in member CA and the support 

reaction at the rocker.

Joint C. From the free-body diagram of joint C, Fig. 6–8c, we have

S+ �Fx = 0; -FCA + 707.1 cos 45� N = 0 FCA = 500 N (T) Ans.

+ c �Fy = 0;  Cy - 707.1 sin 45� N = 0  Cy = 500 N Ans.

Joint A. Although it is not necessary, we can determine the 

components of the support reactions at joint A using the results of FCA  

and FBA . From the free-body diagram, Fig. 6–8d, we have

S+ �Fx = 0; 500 N - A x = 0 A x = 500 N

+ c �Fy = 0; 500 N - A y = 0 A y = 500 N

NOTE: The results of the analysis are summarized in Fig. 6–8e. Note 

that the free-body diagram of each joint (or pin) shows the effects of 

all the connected members and external forces applied to the joint, 

whereas the free-body diagram of each member shows only the effects 

of the end joints on the member.

Fig. 6–8

B

2 m

2 m

500 N

A C

(a)

45�

(b)

B

45�

500 N

FBCFBA

(c)

45�
707.1 N

FCA
C

Cy

(d)

A

FBA � 500 N

FCA � 500 N

Ay

Ax

(e)

B

45�

500 N

A 45�500 N

500 N

500 N

500 N
500 N

C

707.1 N

707.1 N

500 N500 N

Tension

Com
pressionTe

ns
io

n
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EXAMPLE   6.2

Determine the forces acting in all the members of the truss shown in 

Fig. 6–9a.

SOLUTION
By inspection, there are more than two unknowns at each joint. 

Consequently, the support reactions on the truss must first be determined. 

Show that they have been correctly calculated on the free-body diagram 

in Fig. 6–9b. We can now begin the analysis at joint C. Why?

Joint C. From the free-body diagram, Fig. 6–9c,

S+ �Fx = 0; -FCD cos 30� + FCB sin 45� = 0 

+ c �Fy = 0; 1.5 kN + FCD sin 30� - FCB cos 45� = 0

These two equations must be solved simultaneously for each of the 

two unknowns. Note, however, that a direct solution for one of the 

unknown forces may be obtained by applying a force summation 

along an axis that is perpendicular to the direction of the other 

unknown force. For example, summing forces along the y� axis, which 

is perpendicular to the direction of FCD, Fig. 6–9d, yields a direct 
solution for FCB.

+ Q�Fy� = 0; 1.5 cos 30�  kN - FCB sin 15� = 0

FCB = 5.019 kN = 5.02 kN (C) Ans.

Then,

+ R�Fx� = 0;

 -FCD + 5.019 cos 15� - 1.5 sin 30� = 0;     FCD = 4.10 kN (T) Ans.

Joint D. We can now proceed to analyze joint D. The free-body 

diagram is shown in Fig. 6–9e.

S+ �Fx = 0; -FDA cos 30� + 4.10 cos 30�  kN = 0

 FDA = 4.10 kN (T) Ans.

+ c �Fy = 0; FDB - 2(4.10 sin 30�  kN) = 0

 FDB = 4.10 kN (T) Ans.

NOTE: The force in the last member, BA, can be obtained from joint B 

or joint A. As an exercise, draw the free-body diagram of joint B, sum 

the forces in the horizontal direction, and show that FBA = 0.776 kN (C). Fig. 6–9

2 m 2 m

D

B

C
A

2 m

3 kN

(a)

45�

30�30�

2 m 2 m

2 m

3 kN

(b)

3 kN

1.5 kN1.5 kN

x

FCB
FCD

1.5 kN

C

45�

30�

y

15�

(c)

x¿

FCB

FCD

1.5 kN

C

30�

y¿
15�

(d)

(e)

y

x

FDB

FDA 4.10 kN

30�30� D
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Determine the force in each member of the truss shown in Fig. 6–10a. 

Indicate whether the members are in tension or compression.

4 m

(a)

3 m

400 N

B
C

D
A

3 m

600 N

4 m

(b)

400 N

C

A

6 m
600 N

3 m

Ay

Cy

Cx

Fig. 6–10

3

45

x

y

FAB

FAD

600 N

(c)

A

SOLUTION
Support Reactions. No joint can be analyzed until the support 

reactions are determined, because each joint has at least three 

unknown forces acting on it. A free-body diagram of the entire truss is 

given in Fig. 6–10b. Applying the equations of equilibrium, we have

  S+ �Fx = 0; 600 N - Cx = 0 Cx = 600 N 

 a+ �MC = 0; -Ay(6 m) + 400 N(3 m) + 600 N(4 m) = 0 

 Ay = 600 N

 + c �Fy = 0;  600 N - 400 N - Cy = 0 Cy = 200 N

The analysis can now start at either joint A or C. The choice is arbitrary 

since there are one known and two unknown member forces acting on 

the pin at each of these joints.

Joint A. (Fig. 6–10c). As shown on the free-body diagram, FAB is 

assumed to be compressive and FAD is tensile. Applying the equations 

of equilibrium, we have

+ c �Fy = 0; 600 N - 4
5 FAB = 0 FAB = 750 N (C) Ans.

S+ �Fx = 0; FAD - 3
5(750 N) = 0 FAD = 450 N (T) Ans.

EXAMPLE   6.3
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*The proper sense could have been determined by inspection, prior to applying �Fx = 0.

Joint D. (Fig. 6–10d). Using the result for FAD and summing forces in 

the horizontal direction, Fig. 6–10d, we have

S+ �Fx = 0;  -450 N + 3
5 FDB + 600 N = 0 FDB = -250 N

The negative sign indicates that FDB acts in the opposite sense to that 

shown in Fig. 6–10d.* Hence,

  FDB = 250 N (T) Ans.

To determine FDC, we can either correct the sense of FDB on the free-

body diagram, and then apply �Fy = 0, or apply this equation and 

retain the negative sign for FDB, i.e.,

+ c �Fy = 0; -FDC - 4
5(-250 N) = 0 FDC = 200 N (C) Ans.

Joint C. (Fig. 6–10e).

S+ �Fx = 0; FCB - 600 N = 0 FCB = 600 N (C) Ans.

+ c �Fy = 0; 200 N - 200 N K 0 (check)

NOTE: The analysis is summarized in Fig. 6–10f, which shows the free-

body diagram for each joint and member.

3

4 5

x

y

FDB

600 N

(d)

FDC

D450 N

(f)

750 N 250 N

600 N

400 N

Compression 600 N

200 N

600 N

200 N

Tension

C
om

pressionCom
pr

es
sio

n

750 N

450 N

600 N

A
Tension

450 N

250 N 200 N

600 N
D

C
B

x

y

200 N

(e)

C 600 N

200 N

FCB

Fig. 6–10 (cont.)
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6.3 Zero-Force Members

Truss analysis using the method of joints is greatly simplified if we can first 

identify those members which support no loading. These zero-force 
members are used to increase the stability of the truss during construction 

and to provide added support if the loading is changed.

The zero-force members of a truss can generally be found by inspection of 

each of the joints. For example, consider the truss shown in Fig. 6–11a. If a 

free-body diagram of the pin at joint A is drawn, Fig. 6–11b, it is seen that 

members AB and AF are zero-force members. (We could not have come to 

this conclusion if we had considered the free-body diagrams of joints F or B 

simply because there are five unknowns at each of these joints.) In a similar 

manner, consider the free-body diagram of joint D, Fig. 6–11c. Here again it 

is seen that DC and DE are zero-force members. From these observations, 

we can conclude that if only two non-collinear members form a truss joint 
and no external load or support reaction is applied to the joint, the two 
members must be zero-force members. The load on the truss in Fig. 6–11a is 

therefore supported by only five members as shown in Fig. 6–11d.

(a)

D

C

EF

A

P

u

B

FAB

y

x

FAF

A

(b)

�

�

�Fx � 0;  FAB � 0

�Fy � 0;  FAF � 0

FDC y

x

FDE

D

(c)

� �Fy � 0; FDC sin u = 0;   FDC � 0 since sin u � 0
�Fx � 0; FDE � 0 � 0;   FDE � 0�

u

(d)

B

C

EF

P

Fig. 6–11



 6.3 ZERO-FORCE MEMBERS 283

6

Now consider the truss shown in Fig. 6–12a. The free-body diagram of 

the pin at joint D is shown in Fig. 6–12b. By orienting the y axis along 

members DC and DE and the x axis along member DA, it is seen that 

DA  is a zero-force member. Note that this is also the case for member 

CA, Fig. 6–12c. In general then, if three members form a truss joint for 
which two of the members are collinear, the third member is a zero-force 
member provided no external force or support reaction has a component 
that acts along this member. The truss shown in Fig. 6–12d is therefore 

suitable for supporting the load P.

(a)

E

A

D

C

B

P

u

D

FDE

(b)

� �Fx � 0;
�Fy � 0;

FDA

FDC

yx

�

FDA � 0
FDC � FDE

FCD

C

FCB

FCA

yx

�

�

u

(c)

�Fx � 0;    FCA sin u = 0;    FCA � 0 since sin u � 0;
�Fy � 0;    FCB � FCD

(d)

EP

B

A

Fig. 6–12

Important Point

  Zero-force members support no load; however, they are necessary 

for stability, and are available when additional loadings are 

applied to the joints of the truss. These members can usually be 

identified by inspection. They occur at joints where only two 

members are connected and no external load acts along either 

member. Also, at joints having two collinear members, a third 

member will be a zero-force member if no external force 

components act along this member.
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Using the method of joints, determine all the zero-force members of 

the Fink roof truss shown in Fig. 6–13a. Assume all joints are pin 

connected.

SOLUTION
Look for joint geometries that have three members for which two are 

collinear. We have

Joint G. (Fig. 6–13b).

+ c �Fy = 0; FGC = 0 Ans.

Realize that we could not conclude that GC is a zero-force member by 

considering joint C, where there are five unknowns. The fact that GC 

is a zero-force member means that the 5-kN load at C must be 

supported by members CB, CH, CF, and CD.

Joint D. (Fig. 6–13c).

+ b�Fx = 0; FDF = 0 Ans.

Joint F. (Fig. 6–13d).

+ c �Fy = 0; FFC cos u = 0 Since u � 90�, FFC = 0 Ans.

NOTE: If joint B is analyzed, Fig. 6–13e,

+ R�Fx = 0; 2 kN - FBH = 0 FBH = 2 kN (C)

Also, FHC must satisfy �Fy = 0, Fig. 6–13f, and therefore HC is not a  

zero-force member.

C

A E

5 kN

2 kN

D

FGH

B

(a)

(b)

y

x
G

FGC

FGFFGH

(c)

D

FDC

FDF

FDE

y

x

(d)

y

x
F FFEFFG

0FFC

u

(e)

B FBH

FBC

FBA

2 kN

x

y

(f)

y

x
H FHGFHA

2 kN

FHC

Fig. 6–13

EXAMPLE   6.4
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P6–2. Identify the zero-force members in each truss.

A
B D

E

3 m

800 N
300

(a)

3 m

3 m3 m

FGH

C

A
B D

E

2 m

500 N

(b)

4 m

700 N

2 m2 m

C

F

G

Prob. P6–2

P6–1. In each case, calculate the support reactions and 

then draw the free-body diagrams of joints A, B, and C of 

the truss.

A
B C

E D

2 m 2 m

400 N

(a)

2 m

A
B

C

E

F D

2 m 2 m

600 N

30 30 30 30

(b)

Prob. P6–1

PRELIMINARY PROBLEMS
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All problem solutions must include FBDs.

F6–1. Determine the force in each member of the truss. 

State if the members are in tension or compression.

4 ft 4 ft

4 ft

A
B

C

D

450 lb

Prob. F6–1

F6–2. Determine the force in each member of the truss. 

State if the members are in tension or compression.

D

A

C

B

2 ft 2 ft

300 lb

3 ft

Prob. F6–2

F6–3. Determine the force in each member of the truss. 

State if the members are in tension or compression.

B
A

D C

4 ft

3 ft

800 lb

200 lb

Prob. F6–3

F6–4. Determine the greatest load P that can be applied 

to the truss so that none of the members are subjected to a 

force exceeding either 2 kN in tension or 1.5 kN in 

compression.

A B

P

C

3 m

60� 60�

Prob. F6–4

F6–5. Identify the zero-force members in the truss.

A B

C
DE

1.5 m

2 m2 m

3 kN

Prob. F6–5

F6–6. Determine the force in each member of the truss. 

State if the members are in tension or compression.

B

D

C

E

600 lb

450 lb

3 ft 3 ft

30�A

Prob. F6–6

FUNDAMENTAL PROBLEMS
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*6–4. Determine the force in each member of the truss 

and state if the members are in tension or compression.

2 kip

1.5 kip
4 ft

10 ft 10 ft 10 ft

3 kip

3 kip

10 ft

A B

I

H

G

F

C D
E

8 ft

Prob. 6–4

6–5. Determine the force in each member of the truss, and 

state if the members are in tension or compression. Set u = 0�.

6–6. Determine the force in each member of the truss, and 

state if the members are in tension or compression. Set u = 30�.

A C

B

D

2 m

4 kN

3 kN

2 m

1.5 m

u

Probs. 6–5/6

6–7. Determine the force in each member of the truss and 

state if the members are in tension or compression.

E

D

CB

F
A 5 m

3 m

5 kN

4 kN

3 m 3 m 3 m

Prob. 6–7

All problem solutions must include FBDs.

6–1. Determine the force in each member of the truss and 

state if the members are in tension or compression. Set  

P1 = 20 kN, P2 = 10 kN.

6–2. Determine the force in each member of the truss and 

state if the members are in tension or compression. Set  

P1 = 45 kN, P2 = 30 kN.

C B

A

D

1.5 m

2 m

P1

P2

Probs. 6–1/2

6–3. Determine the force in each member of the truss. 

State if the members are in tension or compression.

3 ft 3 ft 3 ft

12
5

13

130 lb

A B

C
E

D

F

4 ft 4 ft

Prob. 6–3

PROBLEMS
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6–11. Determine the force in each member of the Pratt 
truss, and state if the members are in tension or compression.

A

B C D E F
G

H

I

J

K

L

2 m

2 m

2 m 2 m

10 kN 10 kN
20 kN

2 m 2 m 2 m

2 m

2 m

Prob. 6–11

*6–12. Determine the force in each member of the truss 

and state if the members are in tension or compression.

500 lb

3 ft

500 lb

C

B

A F

E

D

9 ft

6 ft

6 ft

3 ft 3 ft

Prob. 6–12

*6–8. Determine the force in each member of the truss 

and state if the members are in tension or compression.

B

E

D

A

C

600 N

900 N

4 m

4 m

6 m

Prob. 6–8

6–9. Determine the force in each member of the truss and 

state if the members are in tension or compression. Set  

P1 = 3 kN, P2 = 6 kN.

6–10. Determine the force in each member of the truss 

and state if the members are in tension or compression. Set 

P1 = 6 kN, P2 = 9 kN.

A
D

E

B C

P1 P2

4 m 4 m4 m

6 m

Probs. 6–9/10
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6–18. Determine the force in each member of the truss 

and state if the members are in tension or compression. Set 

P1 = 10 kN, P2 = 8 kN.

6–19. Determine the force in each member of the truss 

and state if the members are in tension or compression. Set 

P1 = 8 kN, P2 = 12 kN.

1 m 1 m2 m

2 m

A

F EG

B C D

P1 P2

Probs. 6–18/19

*6–20. Determine the force in each member of the truss 

and state if the members are in tension or compression. Set 

P1 = 9 kN, P2 = 15 kN.

6–21. Determine the force in each member of the truss 

and state if the members are in tension or compression. Set 

P1 = 30 kN, P2 = 15 kN.

3 m

A
B

C

DF E

3 m

4 m

P1

P2

Probs. 6–20/21

6–13. Determine the force in each member of the truss in 

terms of the load P and state if the members are in tension 

or compression.

6–14. Members AB and BC can each support a maximum 

compressive force of 800 lb, and members AD, DC, and BD 

can support a maximum tensile force of 1500 lb. If a = 10 ft, 

determine the greatest load P the truss can support.

6–15. Members AB and BC can each support a maximum 

compressive force of 800 lb, and members AD, DC, and BD 

can support a maximum tensile force of 2000 lb. If a = 6 ft, 

determine the greatest load P the truss can support.

B

D
A

C
a a

a

a

3—
4

1—
4

Probs. 6–13/14/15

*6–16. Determine the force in each member of the truss. 

State whether the members are in tension or compression. 

Set P = 8 kN.

6–17. If the maximum force that any member can support 

is 8 kN in tension and 6 kN in compression, determine the 

maximum force P that can be supported at joint D.

60�60�

4 m 4 m

B

E
D

C

A

4 m

P

Probs. 6–16/17
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6.6 Frames and Machines

Frames and machines are two types of structures which are often 

composed of pin-connected multiforce members, i.e., members that are 

subjected to more than two forces. Frames are used to support loads, 

whereas machines contain moving parts and are designed to transmit and 

alter the effect of forces. Provided a frame or machine contains no more 

supports or members than are necessary to prevent its collapse, the forces 

acting at the joints and supports can be determined by applying the 

equations of equilibrium to each of its members. Once these forces are 

obtained, it is then possible to design the size of the members, connections, 

and supports using the theory of mechanics of materials and an appropriate 

engineering design code.

Free-Body Diagrams. In order to determine the forces acting at 

the joints and supports of a frame or machine, the structure must be 

disassembled and the free-body diagrams of its parts must be drawn. The 

following important points must be observed:

  Isolate each part by drawing its outlined shape. Then show all the 

forces and/or couple moments that act on the part. Make sure to 

label or identify each known and unknown force and couple moment 

with reference to an established x, y coordinate system. Also, 

indicate any dimensions used for taking moments. Most often the 

equations of equilibrium are easier to apply if the forces are 

represented by their rectangular components. As usual, the sense of 

an unknown force or couple moment can be assumed.

  Identify all the two-force members in the structure and represent 

their free-body diagrams as having two equal but opposite collinear 

forces acting at their points of application. (See Sec. 5.4.) By 

recognizing the two-force members, we can avoid solving an 

unnecessary number of equilibrium equations.

  Forces common to any two contacting members act with equal 

magnitudes but opposite sense on the respective members. If the 

two members are treated as a “system” of connected members, then 

these forces are “internal” and are not shown on the free-body 
diagram of the system; however, if the free-body diagram of each 
member is drawn, the forces are “external” and must be shown as 

equal in magnitude and opposite in direction on each of the two 

free-body diagrams.

The following examples graphically illustrate how to draw the free-

body diagrams of a dismembered frame or machine. In all cases, the 

weight of the members is neglected.

This crane is a typical example of a 
framework. (© Russell C. Hibbeler)

Common tools such as these pliers act as 
simple machines. Here the applied force on 
the handles creates a much larger force at 
the jaws. (© Russell C. Hibbeler)
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EXAMPLE   6.9

For the frame shown in Fig. 6–21a, draw the free-body diagram of  

(a) each member, (b) the pins at B and A, and (c) the two members 

connected together.

PB

A C

(a)

M

P

(b)

M

Bx

By By

Ax

Ay Cy

Cx

Bx

Bx

By

Bx

By

(c)

Effect of 
member BC
on the pin

Effect of 
member AB
on the pin

B

Pin B

Ax

Ay

Ax

Ax

Pin A

Effect of
member AB

on pin
2

2

Ay

2Ay

2

(d)

Fig. 6–21

P

M

Ax

Ay Cy

Cx

(e)

SOLUTION
Part (a). By inspection, members BA and BC are not two-force 

members. Instead, as shown on the free-body diagrams, Fig. 6–21b, BC 

is subjected to a force from each of the pins at B and C and the external 

force P. Likewise, AB is subjected to a force from each of the pins at 

A  and B and the external couple moment M. The pin forces are 

represented by their x and y components.

Part (b). The pin at B is subjected to only two forces, i.e., the force of 

member BC and the force of member AB. For equilibrium these forces 

(or their respective components) must be equal but opposite, Fig. 6–21c. 

Realize that Newton’s third law is applied between the pin and its 

connected members, i.e., the effect of the pin on the two members, 

Fig. 6–21b, and the equal but opposite effect of the two members on 

the pin, Fig. 6–21c. In the same manner, there are three forces on pin A, 

Fig. 6–21d, caused by the force components of member AB and each 

of the two pin leafs.

Part (c). The free-body diagram of both members connected 

together, yet removed from the supporting pins at A and C, is shown 

in Fig. 6–21e. The force components Bx and By are not shown on this 

diagram since they are internal forces (Fig. 6–21b) and therefore cancel 

out. Also, to be consistent when later applying the equilibrium 

equations, the unknown force components at A and C must act in the 

same sense as those shown in Fig. 6–21b.
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EXAMPLE   6.10

A constant tension in the conveyor belt is maintained by using the 

device shown in Fig. 6–22a. Draw the free-body diagrams of the frame 

and the cylinder (or pulley) that the belt surrounds. The suspended 

block has a weight of W.

(a)

Fig. 6–22 (© Russell C. Hibbeler)

TT

B

(b)

A

u

T

Bx

By

Bx
Ax

By

Ay

T

(c)

(d)

W

u

SOLUTION
The idealized model of the device is shown in Fig. 6–22b. Here the 

angle u is assumed to be known. From this model, the free-body 

diagrams of the pulley and frame are shown in Figs. 6–22c and 6–22d, 

respectively. Note that the force components Bx and By that the pin at 

B exerts on the pulley must be equal but opposite to the ones acting 

on the frame. See Fig. 6–21c of Example 6.9.



308  CHAPTER 6  STRUCTURAL ANALYS IS

6

EXAMPLE   6.11

For the frame shown in Fig. 6–23a, draw the free-body diagrams of 

(a)  the entire frame including the pulleys and cords, (b) the frame 

without the pulleys and cords, and (c) each of the pulleys.

C

A
B

75 lb

(a)

D

 

Fig. 6–23

SOLUTION
Part (a). When the entire frame including the pulleys and cords is 

considered, the interactions at the points where the pulleys and cords are 

connected to the frame become pairs of internal forces which cancel each 

other and therefore are not shown on the free-body diagram, Fig. 6–23b.

Part (b). When the cords and pulleys are removed, their effect on the 
frame must be shown, Fig. 6–23c.

Part (c). The force components Bx, By, Cx, Cy of the pins on the 

pulleys, Fig. 6–23d, are equal but opposite to the force components 

exerted by the pins on the frame, Fig. 6–23c. See Example 6.9.

75 lb

(b)

Ay

Ax

T

75 lb

By

Bx

Cx

Cy

T

T

(c)

(d)

Ax

Ay

75 lb
T

Bx

Cy

CxBy

75 lb
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EXAMPLE   6.12

Draw the free-body diagrams of the members of the backhoe, shown 

in the photo, Fig. 6–24a. The bucket and its contents have a weight W.

SOLUTION
The idealized model of the assembly is shown in Fig. 6–24b. By 

inspection, members AB, BC, BE, and HI are all two-force members 

since they are pin connected at their end points and no other forces 

act on them. The free-body diagrams of the bucket and the stick are 

shown in Fig. 6–24c. Note that pin C is subjected to only two forces, 

whereas the pin at B is subjected to three forces, Fig. 6–24d. The free-

body diagram of the entire assembly is shown in Fig. 6–24e.

(a)

Fig. 6–24 (© Russell C. Hibbeler)

A

B

E

C

(b)

D

F

H

I

G

(c)

Dy

Dy

FBA

Fx

Fy

FBC

FBE

FHI

DxDx

W

C

FBC

FBC     

B
FBC

FBE

FBA

(d) (e)

Fx

Fy

FHI

W
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Before proceeding, it is highly recommended that you cover the solutions 
of these examples and attempt to draw the requested free-body diagrams. 
When doing so, make sure the work is neat and that all the forces and 
couple moments are properly labeled. 

EXAMPLE   6.13

Draw the free-body diagram of each part of the smooth piston and 

link mechanism used to crush recycled cans, Fig. 6–25a.

C

F � 800 N

A

B

D

E

75�

90�

30�

(a)

Fig. 6–25

SOLUTION
By inspection, member AB is a two-force member. The free-body 

diagrams of the three parts are shown in Fig. 6–25b. Since the pins at B 

and D connect only two parts together, the forces there are shown as 

equal but opposite on the separate free-body diagrams of their 

connected members. In particular, four components of force act on 

the piston: Dx and Dy represent the effect of the pin (or lever EBD), 

Nw is the resultant force of the wall support, and P is the resultant 

compressive force caused by the can C. The directional sense of each 

of the unknown forces is assumed, and the correct sense will be 

established after the equations of equilibrium are applied.

NOTE: A free-body diagram of the entire assembly is shown in Fig. 6–25c. 

Here the forces between the components are internal and are not shown 

on the free-body diagram.

F � 800 N

E

75�

D
Dx

Dy

A

B

BFAB

FAB

FAB

30�

Dx P
D

Nw

Dy

(b)

F � 800 N

75�

30�

P

FAB

Nw

(c)
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Procedure for Analysis

The joint reactions on frames or machines (structures) composed of 

multiforce members can be determined using the following 

procedure.

Free-Body Diagram.

  Draw the free-body diagram of the entire frame or machine, a 

portion of it, or each of its members. The choice should be made 

so that it leads to the most direct solution of the problem.

  Identify the two-force members. Remember that regardless of 

their shape, they have equal but opposite collinear forces acting 

at their ends.

  When the free-body diagram of a group of members of a frame or 

machine is drawn, the forces between the connected parts of this 

group are internal forces and are not shown on the free-body 

diagram of the group.

  Forces common to two members which are in contact act with 

equal magnitude but opposite sense on the respective free-body 

diagrams of the members.

  In many cases it is possible to tell by inspection the proper sense 

of the unknown forces acting on a member; however, if this seems 

difficult, the sense can be assumed.

  Remember that once the free-body diagram is drawn, a couple 

moment is a free vector and can act at any point on the diagram. 

Also, a force is a sliding vector and can act at any point along its 

line of action.

Equations of Equilibrium.

  Count the number of unknowns and compare it to the total 

number of equilibrium equations that are available. In two 

dimensions, there are three equilibrium equations that can be 

written for each member.

  Sum moments about a point that lies at the intersection of the 

lines of action of as many of the unknown forces as possible.

  If the solution of a force or couple moment magnitude is found to 

be negative, it means the sense of the force is the reverse of that 

shown on the free-body diagram.
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EXAMPLE   6.14

Determine the tension in the cables and also the force P required to 

support the 600-N force using the frictionless pulley system shown in 

Fig. 6–26a.

Fig. 6–26

A

P B

C

600 N

(a)

A

B

C

R

T
P P

P P

T

P P
P

(b)

600 N

SOLUTION
Free-Body Diagram. A free-body diagram of each pulley including 

its pin and a portion of the contacting cable is shown in Fig. 6–26b. 

Since the cable is continuous, it has a constant tension P acting 

throughout its length. The link connection between pulleys B and C is 

a two-force member, and therefore it has an unknown tension T acting 

on it. Notice that the principle of action, equal but opposite reaction 

must be carefully observed for forces P and T when the separate free-

body diagrams are drawn.

Equations of Equilibrium. The three unknowns are obtained as 

follows:

Pulley A

+ c�Fy = 0; 3P - 600 N = 0 P = 200 N Ans.

Pulley B

+ c�Fy = 0; T - 2P = 0 T = 400 N Ans.

Pulley C

+ c�Fy = 0; R - 2P - T = 0 R = 800 N Ans.
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EXAMPLE   6.15

A 500-kg elevator car in Fig. 6–27a is being hoisted by motor A using 

the pulley system shown. If the car is traveling with a constant speed, 

determine the force developed in the two cables. Neglect the mass of 

the cable and pulleys.

DE

C

B

AF

(a)

SOLUTION
Free-Body Diagram. We can solve this problem using the free-body 

diagrams of the elevator car and pulley C, Fig. 6–27b. The tensile forces 

developed in the cables are denoted as T1 and T2.

Equations of Equilibrium. For pulley C,

+ c�Fy = 0;  T2 - 2T1 = 0  or  T2 = 2T1 (1)

For the elevator car,

+ c�Fy = 0; 3T1 + 2T2 - 500(9.81) N = 0 (2)

Substituting Eq. (1) into Eq. (2) yields

3T1 + 2(2T1) - 500(9.81) N = 0

 T1 = 700.71 N = 701 N Ans.

Substituting this result into Eq. (1),

 T2 = 2(700.71) N = 1401 N = 1.40 kN  Ans.

Fig. 6–27

(b)

T1

N1

N4N2

N3

T1 T1

T2 T2

500 (9.81) N

C

T1 T1

T2
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EXAMPLE   6.16

Determine the horizontal and vertical components of force which the 

pin at C exerts on member BC of the frame in Fig. 6–28a.

SOLUTION I
Free-Body Diagrams. By inspection it can be seen that AB is a two-

force member. The free-body diagrams are shown in Fig. 6–28b.

Equations of Equilibrium. The three unknowns can be determined 

by applying the three equations of equilibrium to member BC.

a+�MC = 0; 2000 N(2 m) - (FAB sin 60�)(4 m) = 0 FAB = 1154.7 N

S+ �Fx = 0; 1154.7 cos 60� N - Cx = 0 Cx = 577 N Ans.

+ c�Fy = 0; 1154.7 sin 60� N - 2000 N + Cy = 0 

Cy = 1000 N           Ans.

SOLUTION II
Free-Body Diagrams. If one does not recognize that AB is a two-

force member, then more work is involved in solving this problem. The 

free-body diagrams are shown in Fig. 6–28c.

Equations of Equilibrium. The six unknowns are determined by 

applying the three equations of equilibrium to each member.

Member AB

a+�MA = 0; Bx(3 sin 60� m) - By(3 cos 60� m) = 0 (1)

S+ �Fx = 0; A x - Bx = 0 (2)

+ c�Fy = 0; A y - By = 0 (3)

Member BC

a+�MC = 0; 2000 N(2 m) - By(4 m) = 0 (4)

S+ �Fx = 0; Bx - Cx = 0 (5)

+ c�Fy = 0; By - 2000 N + Cy = 0 (6)

The results for Cx and Cy can be determined by solving these equations 

in the following sequence: 4, 1, 5, then 6. The results are

 By = 1000 N

 Bx = 577 N

  Cx = 577 N  Ans.

  Cy = 1000 N Ans.

By comparison, Solution I is simpler since the requirement that FAB in 

Fig. 6–28b be equal, opposite, and collinear at the ends of member AB 

automatically satisfies Eqs. 1, 2, and 3 above and therefore eliminates the 

need to write these equations. As a result, save yourself some time and effort 
by always identifying the two-force members before starting the analysis!

A

B

C

2000 N

2 m2 m
3 m

60�

(a)

2 m2 m
60�

FAB
Cy

Cx

FAB

FAB

2000 N

(b)

B

2 m2 m Cy

Cx
C

By

Bx

2000 N

By

Bx

Ay

AAx

(c)

3 m

60�

Fig. 6–28
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EXAMPLE   6.17

The compound beam shown in Fig. 6–29a is pin connected at B. 

Determine the components of reaction at its supports. Neglect its 

weight and thickness.

SOLUTION
Free-Body Diagrams. By inspection, if we consider a free-body 

diagram of the entire beam ABC, there will be three unknown reactions 

at A and one at C. These four unknowns cannot all be obtained from 

the three available equations of equilibrium, and so for the solution it 

will become necessary to dismember the beam into its two segments, 

as shown in Fig. 6–29b.

Equations of Equilibrium. The six unknowns are determined as 

follows:

Segment BC

d+ �Fx = 0; Bx = 0

a+�MB = 0; -8 kN(1 m) + Cy(2 m) = 0

+ c�Fy = 0; By - 8 kN + Cy = 0

Segment AB

S+ �Fx = 0; A x - (10 kN)13
52 + Bx = 0

a+�MA = 0; MA - (10 kN)14
52(2 m) - By(4 m) = 0

+ c�Fy = 0; A y - (10 kN)14
52 - By = 0

Solving each of these equations successively, using previously 

calculated results, we obtain

A x = 6 kN   A y = 12 kN   MA = 32 kN # m Ans.

Bx = 0     By = 4 kN

Cy = 4 kN  Ans.

B
C

4 kN/m
3

45

2 m2 m 2 m

(a)

A

10 kN

Fig. 6–29

2 m

4 m

3

45

10 kN

B

2 m

1 m

A

Ay

Ax

MA

By

Bx Bx

By Cy

8 kN

(b)
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EXAMPLE   6.18

The two planks in Fig. 6–30a are connected together by cable BC and 

a smooth spacer DE. Determine the reactions at the smooth supports 

A and F, and also find the force developed in the cable and spacer.

SOLUTION
Free-Body Diagrams. The free-body diagram of each plank is shown 

in Fig. 6–30b. It is important to apply Newton’s third law to the 

interaction forces FBC and FDE as shown.

Equations of Equilibrium. For plank AD,

a+�MA = 0; FDE (6 ft) - FBC (4 ft) - 100 lb (2 ft) = 0

For plank CF,

a+�MF = 0; FDE(4 ft) - FBC (6 ft) + 200 lb (2 ft) = 0

Solving simultaneously,

 FDE = 140 lb    FBC = 160 lb Ans.

Using these results, for plank AD,

+ c�Fy = 0; NA + 140 lb - 160 lb - 100 lb = 0

 NA = 120 lb Ans.

And for plank CF,

+ c�Fy = 0; NF + 160 lb - 140 lb - 200 lb = 0

 NF = 180 lb Ans.

NOTE: Draw the free-body diagram of the system of both planks and 

apply �MA = 0 to determine NF. Then use the free-body diagram of 

CEF to determine FDE and FBC.

F
D

E

B

C

A

2 ft 2 ft 2 ft

100 lb
200 lb

2 ft 2 ft

(a)

D C FA

100 lb

(b)

2 ft 2 ft 2 ft 2 ft2 ft 2 ft

200 lb

NA
NF

FDE

FDE

FBC

FBC

Fig. 6–30
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EXAMPLE   6.19

The 75-kg man in Fig. 6–31a attempts to lift the 40-kg uniform beam 

off the roller support at B. Determine the tension developed in the 

cable attached to B and the normal reaction of the man on the beam 

when this is about to occur.

SOLUTION
Free-Body Diagrams. The tensile force in the cable will be denoted 

as T1. The free-body diagrams of the pulley E, the man, and the beam 

are shown in Fig. 6–31b. Since the man must lift the beam off the roller 

B then NB = 0. When drawing each of these diagrams, it is very 

important to apply Newton’s third law.

Equations of Equilibrium. Using the free-body diagram of pulley E,

+ c�Fy = 0;  2T1 - T2 = 0 or T2 = 2T1 (1)

Referring to the free-body diagram of the man using this result,

+ c�Fy = 0  Nm + 2T1 - 75(9.81) N = 0 (2)

Summing moments about point A on the beam,

a+�MA = 0; T1(3 m) - Nm  (0.8 m) - [40(9.81) N] (1.5 m) = 0 (3)

Solving Eqs. 2 and 3 simultaneously for T1 and Nm, then using  Eq. (1) 

for T2, we obtain

T1 = 256 N  Nm = 224 N  T2 = 512 N Ans.

SOLUTION II
A direct solution for T1 can be obtained by considering the beam, the 

man, and pulley E as a single system. The free-body diagram is shown 

in Fig. 6–31c. Thus,

 a+�MA = 0;  2T1(0.8 m) - [75(9.81) N](0.8 m)

 -  [40(9.81) N](1.5 m) + T1(3 m) = 0

 T1 = 256 N Ans.

With this result Eqs. 1 and 2 can then be used to find Nm and T2.

A B

CD

H

E
F

2.2 m

(a)
0.8 m

G

H
E

1.5 m

75 (9.81) N

40 (9.81) N

(b)

0.8 m 0.7 mAy NB � 0

Ax

Nm T1

T1T1
T2 � 2T1

T2

Nm

G

1.5 m

75 (9.81) N

40 (9.81) N

(c)

0.8 m 0.7 mAy NB � 0

Ax

T1

T1T1

Fig. 6–31
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EXAMPLE   6.20

The smooth disk shown in Fig. 6–32a is pinned at D and has a weight 

of 20 lb. Neglecting the weights of the other members, determine the 

horizontal and vertical components of reaction at pins B and D.

3.5 ft

3 ft

D C

A

(a)

B

SOLUTION
Free-Body Diagrams. The free-body diagrams of the entire frame 

and each of its members are shown in Fig. 6–32b.

Equations of Equilibrium. The eight unknowns can of course be 

obtained by applying the eight equilibrium equations to each 

member—three to member AB, three to member BCD, and two to 

the disk. (Moment equilibrium is automatically satisfied for the disk.) 

If this is done, however, all the results can be obtained only from a 

simultaneous solution of some of the equations. (Try it and find out.) 

To avoid this situation, it is best first to determine the three support 

reactions on the entire frame; then, using these results, the remaining 

five equilibrium equations can be applied to two other parts in order 

to solve successively for the other unknowns.

Entire Frame
a+�MA = 0;  -20 lb (3 ft) + Cx(3.5 ft) = 0 Cx = 17.1 lb

S+ �Fx = 0; A x - 17.1 lb = 0 A x = 17.1 lb

+ c�Fy = 0; A y - 20 lb = 0 A y = 20 lb

Member AB
   S+ �Fx = 0; 17.1 lb - Bx = 0 Bx = 17.1 lb Ans.

a+�MB = 0;  -20 lb (6 ft) + ND(3 ft) = 0 ND = 40 lb

    + c�Fy = 0;  20 lb - 40 lb + By = 0 By = 20 lb Ans.

Disk

S+ �Fx = 0;   Dx = 0 Ans.

+ c�Fy = 0;   40 lb - 20 lb - Dy = 0 Dy = 20 lb Ans.Fig. 6–32

3.5 ft

3 ft
Ay

Ax

20 lb

Cx

3.5 ft

3 ft
CxDx

Dy

By

Bx

3 ft

(b)

3 ft

ND

By

Bx

ND

Dy

Dx

20 lb

20 lb

17.1 lb
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EXAMPLE   6.21

The frame in Fig. 6–33a supports the 50-kg cylinder. Determine the 

horizontal and vertical components of reaction at A and the force at C.

SOLUTION
Free-Body Diagrams. The free-body diagram of pulley D, along 

with the cylinder and a portion of the cord (a system), is shown in 

Fig. 6–33b. Member BC is a two-force member as indicated by its free-

body diagram. The free-body diagram of member ABD is also shown.

Equations of Equilibrium. We will begin by analyzing the equilibrium 

of the pulley. The moment equation of equilibrium is automatically 

satisfied with T = 50(9.81) N, and so

S+ �Fx = 0; Dx - 50(9.81) N = 0 Dx = 490.5 N

+ c�Fy = 0; Dy - 50(9.81) N = 0 Dy = 490.5 N Ans.

Using these results, FBC can be determined by summing moments 

about point A on member ABD.

a+�MA = 0; FBC (0.6 m) + 490.5 N(0.9 m) - 490.5 N(1.20 m) =  0

 FBC = 245.25 N Ans.

Now Ax and Ay can be determined by summing forces.

S+ �Fx = 0;    Ax - 245.25 N - 490.5 N = 0 Ax = 736 N Ans.

+ c�Fy = 0; Ay - 490.5 N = 0 Ay = 490.5 N Ans.

A

B

D

C

(a)

1.2 m

0.6 m

0.3 m

0.1 m

1.20 m

0.6 m

� 490.5 N

� 490.5 N

(b)

T �  50 (9.81) N

50 (9.81) N
Ax

Dx

FBC

FBC

FBC

Dx

Ay

Dy

Dy

 0.9 m

Fig. 6–33
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EXAMPLE   6.22

800 N
800 N

800 N

800 N

FBC

FBC

FBAFBA

(b)

3 m

800 N

2 m

A
B

C

(a)

Determine the force the pins at A and B exert on the two-member 

frame shown in Fig. 6–34a.

SOLUTION I

Free-Body Diagrams. By inspection AB and BC are two-force 

members. Their free-body diagrams, along with that of the pulley, are 

shown in Fig. 6–34b. In order to solve this problem we must also include 

the free-body diagram of the pin at B because this pin connects all three 
members together, Fig. 6–34c.

Equations of Equilibrium: Apply the equations of force equilibrium 

to pin B.

S+ �Fx = 0; FBA - 800 N = 0; FBA = 800 N Ans.

+ c�Fy = 0; FBC - 800 N = 0; FBC = 800 N Ans.

NOTE: The free-body diagram of the pin at A, Fig. 6–34d, indicates 

how the force FAB is balanced by the force (FAB>2) exerted on the pin 

by each of the two pin leaves.

SOLUTION II
Free-Body Diagram. If we realize that AB and BC are two-force 

members, then the free-body diagram of the entire frame produces an 

easier solution, Fig. 6–34e. The force equations of equilibrium are the 

same as those above. Note that moment equilibrium will be satisfied, 

regardless of the radius of the pulley.Fig. 6–34

A

2

FBA

FBA

2

FBA

Pin A

(d)

FBA

Pin B

FBC

800 N

800 N

(c)

3 m

800 N

2 m

B

800 N

FBC

FBA

(e)
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PRELIMINARY PROBLEMS

P6–3. In each case, identify any two-force members, and 

then draw the free-body diagrams of each member of the 

frame.

A B

C

1.5 m

1.5 m

200 N2 m 2 m

(a)

60 N � m 

Prob. P6–3

A

B

1 m

C

1.5 m
1 m 2 m

500 N

4

3

5

(c)

D

A B 1.5 m

200 N

(e)

2 m2 m

C

2 m

0.25 m

400 N

0.2 m

(f)

A B

2 m2 m

C

1.5 m

A
B

C

2 m6 m 2 m

800 N

(d)

200 N/m

A B

C

1 m

1 m

3 m

400 N/m

(b)
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FUNDAMENTAL PROBLEMS

F6–13. Determine the force P needed to hold the 60-lb 

weight in equilibrium.

P

Prob. F6–13

F6–14. Determine the horizontal and vertical components 

of reaction at pin C.

3 ft3 ft

400 lb
500 lb

3 ft3 ft

4 ft

B

A

C

Prob. F6–14

F6–15. If a 100-N force is applied to the handles of the 

pliers, determine the clamping force exerted on the smooth 

pipe B and the magnitude of the resultant force that one of 

the members exerts on pin A.

250 mm

50 mm

100 N

100 N

45�

A

B

Prob. F6–15

F6–16. Determine the horizontal and vertical components 

of reaction at pin C.

     

B

A

C

400 N

800 N � m
2 m1 m

1 m

1 m

Prob. F6–16

All problem solutions must include FBDs.
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F6–17. Determine the normal force that the 100-lb plate A 

exerts on the 30-lb plate B.

4 ft

B

A

1 ft 1 ft

Prob. F6–17

F6–18. Determine the force P needed to lift the load. Also, 

determine the proper placement x of the hook for 

equilibrium. Neglect the weight of the beam.

PB

C

A

0.9 m

100 mm 100 mm

100 mm

6 kN

x

Prob. F6–18

F6–19. Determine the components of reaction at A and B.

A

B C

D

1.5 m

1.5 m2 m 2 m

800 N�m 600 N

45�

Prob. F6–19

F6–20. Determine the reactions at D.

3 m3 m

10 kN
15 kN

3 m3 m

4 m

B

A

C

D 

Prob. F6–20
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F6–21. Determine the components of reaction at A and C.

1.5 m1.5 m

3 m

400 N/ m

A

B

C

600 N

Prob. F6–21

F6–22. Determine the components of reaction at C.

B

C

D

E

1.5 m 1.5 m 1.5 m 1.5 m

2 m

2 m
250 N

A

Prob. F6–22

F6–23. Determine the components of reaction at E.

A

E

B

CD

5 kN

1.5 m 1.5 m

2 m

4 kN/m

Prob. F6–23

F6–24. Determine the components of reaction at D and the 

components of reaction the pin at A exerts on member BA.

6 kN

A

B C

D

3 m

4 m

2 m

8 kN/m

Prob. F6–24
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All problem solutions must include FBDs. 6–63. Determine the force P required to hold the 50-kg 

mass in equilibrium.

P

A

B

C

Prob. 6–63

*6–64. Determine the force P required to hold the 150-kg 

crate in equilibrium.

P

A

B

C

Prob. 6–64

PROBLEMS

6–61. Determine the force P required to hold the 100-lb 

weight in equilibrium.

P
A

B

C

D

Prob. 6–61

6–62. In each case, determine the force P required to 

maintain equilibrium. The block weighs 100 lb.

P

(a) (b) (c)

P

P

Prob. 6–62
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*6–68. The bridge frame consists of three segments which 

can be considered pinned at A, D, and E, rocker supported 

at C and F, and roller supported at B. Determine the 

horizontal and vertical components of reaction at all these 

supports due to the loading shown.

15 ft

20 ft

5 ft 5 ft

15 ft

2 kip/ft

30 ft

A

B

C F

D
E

Prob. 6–68

6–69. Determine the reactions at supports A and B.

6 ft

500 lb/ ft
6 ft

8 ft

9 ft

700 lb/ ft

6 ft

A C

D

B

Prob. 6–69

6–70. Determine the horizontal and vertical components 

of force at pins B and C. The suspended cylinder has a mass 

of 75 kg.

A

BC

1.5 m

0.3 m

2 m
0.5 m

Prob. 6–70

6–65. Determine the horizontal and vertical components 

of force that pins A and B exert on the frame.

4 m

3 m

2 kN/m

A

C

B

Prob. 6–65

6–66. Determine the horizontal and vertical components 

of force at pins A and D.

1.5 m

D

A B

C

E

1.5  m

0.3 m

12 kN

2 m

Prob. 6–66

6–67. Determine the force that the smooth roller C exerts 

on member AB. Also, what are the horizontal and vertical 

components of reaction at pin A? Neglect the weight of the 

frame and roller.

C
0.5 ft

3 ft

A

60 lb�ft

4 ft

B

D

Prob. 6–67
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6–74. The wall crane supports a load of 700 lb. Determine 

the horizontal and vertical components of reaction at the 

pins  A and D. Also, what is the force in the cable at the 

winch W?

6–75. The wall crane supports a load of 700 lb. Determine 

the horizontal and vertical components of reaction at the pins 

A and D. Also, what is the force in the cable at the winch W? 

The jib ABC has a weight of 100 lb and member BD has a 

weight of 40 lb. Each member is uniform and has a center of 

gravity at its center.

4 ft

D

A B

C

E

W

4 ft

700 lb

60�

4 ft

Probs. 6–74/75

*6–76. Determine the horizontal and vertical components 

of force which the pins at A and B exert on the frame.

400 N/m

1.5 m

2 m

3 m

3 m

1.5 m

A

F

E

D

B

C

Prob. 6–76

6–71. Determine the reactions at the supports A, C, and E 

of the compound beam.

4 m 3 m3 m 6 m
2 m

A DB EC

3 kN/m
12 kN

Prob. 6–71

*6–72. Determine the resultant force at pins A, B, and C 

on the three-member frame.

200 N/m

60�

2 m

800 N

2 m

B

C

A

Prob. 6–72

6–73. Determine the reactions at the supports at A, E, and 

B of the compound beam.

3 m

900 N/m 900 N/m

4 m3 m

A C D

B

3 m 3 m 

E

Prob. 6–73



Chapter 8

The effective design of this brake requires that it resist the frictional forces 
developed between it and the wheel. In this chapter we will study dry friction, 

and show how to analyze friction forces for various engineering applications.

(© Pavel Polkovnikov/Shutterstock)



CHAPTER OBJECTIVES

■ To introduce the concept of dry friction and show how to analyze 
the equilibrium of rigid bodies subjected to this force.

■ To present specific applications of frictional force analysis on 
wedges, screws, belts, and bearings.

■ To investigate the concept of rolling resistance.

8.1 Characteristics of Dry Friction

Friction is a force that resists the movement of two contacting surfaces 

that slide relative to one another. This force always acts tangent to the 

surface at the points of contact and is directed so as to oppose the possible 

or existing motion between the surfaces.

In this chapter, we will study the effects of dry friction, which is 

sometimes called Coulomb friction since its characteristics were studied 

extensively by the French physicist Charles-Augustin de Coulomb 

in  1781. Dry friction occurs between the contacting surfaces of bodies 

when there is no lubricating fluid.*

Friction

*Another type of friction, called fluid friction, is studied in fluid mechanics.

The heat generated by the abrasive 
action of friction can be noticed 
when using this grinder to sharpen a 
metal blade. (© Russell C. Hibbeler) 
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Theory of Dry Friction. The theory of dry friction can be 

explained by considering the effects caused by pulling horizontally on a 

block of uniform weight W which is resting on a rough horizontal surface 

that is nonrigid or deformable, Fig. 8–1a. The upper portion of the block, 

however, can be considered rigid. As shown on the free-body diagram of 

the block, Fig. 8–1b, the floor exerts an uneven distribution of both 

normal force �Nn and frictional force �Fn along the contacting surface. 

For equilibrium, the normal forces must act upward to balance the 

block’s weight W, and the frictional forces act to the left to prevent the 

applied force P from moving the block to the right. Close examination of 

the contacting surfaces between the floor and block reveals how these 

frictional and normal forces develop, Fig. 8–1c. It can be seen that many 

microscopic irregularities exist between the two surfaces and, as a result, 

reactive forces �Rn are developed at each point of contact.* As shown, 

each reactive force contributes both a frictional component �Fn and a 

normal component �Nn.

Equilibrium. The effect of the distributed normal and frictional 

loadings is indicated by their resultants N and F on the free-body diagram, 

Fig. 8–1d. Notice that N acts a distance x to the right of the line of action 

of W, Fig. 8–1d. This location, which coincides with the centroid or 

geometric center of the normal force distribution in Fig. 8–1b, is necessary 

in order to balance the “tipping effect” caused by P. For example, if P is 

applied at a height h from the surface, Fig. 8–1d, then moment equilibrium 

about point O is satisfied if Wx = Ph or x = Ph>W .

P

W

(a)
   

P

W

(b)

�Nn

�Fn

   

(c)

�F1

�N1

�N2

�R1

�R2

�F2 �Fn

�Rn

�Nn     

P

W

(d)

a/2 a/2

h
F

O

Nx

Resultant normal
and frictional forces

Fig. 8–1

A

B

C

Regardless of the weight of the rake or 
shovel that is suspended, the device has 
been designed so that the small roller 
holds the handle in equilibrium due to 
frictional forces that develop at the points 
of contact, A, B, C. (© Russell C. Hibbeler)

*Besides mechanical interactions as explained here, which is referred to as a classical 

approach, a detailed treatment of the nature of frictional forces must also include the 

effects of temperature, density, cleanliness, and atomic or molecular attraction between the 

contacting surfaces. See J. Krim, Scientific American, October, 1996.
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Impending Motion. In cases where the surfaces of contact are 

rather “slippery,” the frictional force F may not be great enough to 

balance P, and consequently the block will tend to slip. In other words, as 

P is slowly increased, F correspondingly increases until it attains a certain 

maximum value Fs, called the limiting static frictional force, Fig. 8–1e. 

When this value is reached, the block is in unstable equilibrium since any 

further increase in P will cause the block to move. Experimentally, it has 

been determined that this limiting static frictional force Fs is directly 
proportional to the resultant normal force N. Expressed mathematically,

 Fs = ms N  (8–1)

where the constant of proportionality, ms (mu “sub” s), is called the 

coefficient of static friction.

Thus, when the block is on the verge of sliding, the normal force N and 

frictional force Fs combine to create a resultant Rs, Fig. 8–1e. The angle fs 

(phi “sub” s) that Rs makes with N is called the angle of static friction. 

From the figure,

fs = tan-1aFs

N
b = tan-1ams N

N
b = tan-1 ms

Typical values for ms are given in Table 8–1. Note that these values can 

vary since experimental testing was done under variable conditions of 

roughness and cleanliness of the contacting surfaces. For applications, 

therefore, it is important that both caution and judgment be exercised 

when selecting a coefficient of friction for a given set of conditions. 

When  a more accurate calculation of Fs is required, the coefficient of 

friction should be determined directly by an experiment that involves 

the two materials to be used.

W

(e)

N
x

Fs

Rs

Impending
motion

P

Equilibrium

h

fs

Some objects, such as this barrel, may not be 
on the verge of slipping, and therefore the 
friction force F must be determined 
strictly  from the equations of equilibrium. 
(© Russell C. Hibbeler)

Table 8–1 Typical Values for Ms

Contact 
Materials

Coefficient of 
Static Friction (ms)

Metal on ice 0.03–0.05

Wood on wood 0.30–0.70

Leather on wood 0.20–0.50

Leather on metal 0.30–0.60

Copper on copper 0.74–1.21

Fig. 8–1 (cont.)

F

W
T

N
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Motion. If the magnitude of P acting on the block is increased so that 

it becomes slightly greater than Fs, the frictional force at the contacting 

surface will drop to a smaller value Fk, called the kinetic frictional force. 

The block will begin to slide with increasing speed, Fig. 8–2a. As this 

occurs, the block will “ride” on top of these peaks at the points of contact, 

as shown in Fig. 8–2b. The continued breakdown of the surface is the 

dominant mechanism creating kinetic friction.

Experiments with sliding blocks indicate that the magnitude of the 

kinetic friction force is directly proportional to the magnitude of the 

resultant normal force, expressed mathematically as

 Fk = mk  N  (8–2)

Here the constant of proportionality, mk, is called the coefficient of 
kinetic friction. Typical values for mk are approximately 25 percent 

smaller than those listed in Table 8–1 for ms.
As shown in Fig. 8–2a, in this case, the resultant force at the surface of 

contact, Rk, has a line of action defined by fk. This angle is referred to as 

the angle of kinetic friction, where

fk = tan-1aFk

N
b = tan-1amk  N

N
b = tan-1 mk

By comparison, fs Ú fk.

P

W

(a)

N

Fk

Motion

Rk

fk  (b)

�F1

�N1

�N2
�R2

�R1

�F2 �Fn

�Rn

�Nn

Fig. 8–2
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The above effects regarding friction can be summarized by referring to 

the graph in Fig. 8–3, which shows the variation of the frictional force F 

versus the applied load P. Here the frictional force is categorized in three 

different ways:

  F is a static frictional force if equilibrium is maintained.

  F is a limiting static frictional force Fs when it reaches a maximum 

value needed to maintain equilibrium.

  F is a kinetic frictional force Fk when sliding occurs at the contacting 

surface.

Notice also from the graph that for very large values of P or for high 

speeds, aerodynamic effects will cause Fk and likewise mk to begin to 

decrease.

Characteristics of Dry Friction. As a result of experiments that 

pertain to the foregoing discussion, we can state the following rules 

which apply to bodies subjected to dry friction.

  The frictional force acts tangent to the contacting surfaces in a 

direction opposed to the motion or tendency for motion of one 

surface relative to another.

  The maximum static frictional force Fs that can be developed is 

independent of the area of contact, provided the normal pressure is 

not very low nor great enough to severely deform or crush the 

contacting surfaces of the bodies.

  The maximum static frictional force is generally greater than the 

kinetic frictional force for any two surfaces of contact. However, if 

one of the bodies is moving with a very low velocity over the surface 

of another, Fk becomes approximately equal to Fs, i.e., ms � mk.

  When slipping at the surface of contact is about to occur, the 

maximum static frictional force is proportional to the normal force, 

such that Fs = ms N.

  When slipping at the surface of contact is occurring, the kinetic 

frictional force is proportional to the normal force, such that 

Fk = mk  N.

F

Fs

Fk

P

No motion Motion

F � P

45�

Fig. 8–3
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8.2 Problems Involving Dry Friction

If a rigid body is in equilibrium when it is subjected to a system of 

forces that includes the effect of friction, the force system must satisfy not 

only the equations of equilibrium but also the laws that govern the 

frictional forces.

Types of Friction Problems. In general, there are three types of 

static problems involving dry friction. They can easily be classified once 

free-body diagrams are drawn and the total number of unknowns are 

identified and compared with the total number of available equilibrium 

equations.

No Apparent Impending Motion. Problems in this category are 

strictly equilibrium problems, which require the number of unknowns to 

be equal to the number of available equilibrium equations. Once the 

frictional forces are determined from the solution, however, their 

numerical values must be checked to be sure they satisfy the inequality 

F … ms N; otherwise, slipping will occur and the body will not remain in 

equilibrium. A problem of this type is shown in Fig. 8–4a. Here we must 

determine the frictional forces at A and C to check if the equilibrium 

position of the two-member frame can be maintained. If the bars are 

uniform and have known weights of 100 N each, then the free-body 

diagrams are as shown in Fig. 8–4b. There are six unknown force 

components which can be determined strictly from the six equilibrium 

equations (three for each member). Once FA, NA, FC, and NC are 

determined, then the bars will remain in equilibrium provided FA … 0.3NA  

and FC … 0.5NC are satisfied.

Impending Motion at All Points of Contact. In this case the total 

number of unknowns will equal the total number of available equilibrium 

equations plus the total number of available frictional equations, F = mN. 
When motion is impending at the points of contact, then Fs = ms N; 
whereas if the body is slipping, then Fk = mk  N. For example, consider the 

problem of finding the smallest angle u at which the 100-N bar in  Fig. 8–5a 

can be placed against the wall without slipping. The free-body diagram is 

shown in Fig. 8–5b. Here the five unknowns are determined from the three 

equilibrium equations and two static frictional equations which apply at 

both points of contact, so that FA = 0.3NA  and FB = 0.4NB.

(a)

B

mC � 0.5mA � 0.3

A C

(b)

Bx

By

By

Bx

100 N 100 N

FA
FC

NA NC

Fig. 8–4

A

B
mB � 0.4

mA � 0.3

u

(a)

NB

NA

FB

FA

(b)

100 N
u

Fig. 8–5



 8.2 PROBLEMS INVOLVING DRY FRICTION 407

8

Impending Motion at Some Points of Contact. Here the 

number of unknowns will be less than the number of available equilibrium 

equations plus the number of available frictional equations or conditional 

equations for tipping. As a result, several possibilities for motion or 

impending motion will exist and the problem will involve a determination 

of the kind of motion which actually occurs. For example, consider the 

two-member frame in Fig. 8–6a. In this problem we wish to determine the 

horizontal force P needed to cause movement. If each member has a 

weight of 100 N, then the free-body diagrams are as shown in Fig. 8–6b. 

There are seven unknowns. For a unique solution we must satisfy the six 

equilibrium equations (three for each member) and only one of two 

possible static frictional equations. This means that as P increases it will 

either cause slipping at A and no slipping at C, so that FA = 0.3NA  and 

FC … 0.5NC; or slipping occurs at C and no slipping at A, in which case 

FC = 0.5NC and FA … 0.3NA. The actual situation can be determined by 

calculating P for each case and then choosing the case for which P is 

smaller. If in both cases the same value for P is calculated, which would be 

highly improbable, then slipping at both points occurs simultaneously; 

i.e., the seven unknowns would satisfy eight equations.

Equilibrium Versus Frictional Equations. Whenever we 

solve a problem such as the one in Fig. 8–4, where the friction force F 

is to be an “equilibrium force” and satisfies the inequality F 6 ms N , 

then we can assume the sense of direction of F on the free-body 

diagram. The correct sense is made known after solving the equations 

of equilibrium for F. If F is a negative scalar the sense of F is the 

reverse of that which was assumed. This convenience of assuming the 

sense of F is possible because the equilibrium equations equate to 

zero the components of vectors acting in the same direction. However, 

in cases where the frictional equation F = mN  is used in the solution 

of a problem, as in the case shown in Fig. 8–5, then the convenience of 

assuming the sense of F is lost, since the frictional equation relates 

only the magnitudes of two perpendicular vectors. Consequently, F 

must always be shown acting with its correct sense on the free-body 

diagram, whenever the frictional equation is used for the solution of 

a problem.

P

(a)

A

B

mC � 0.5mA � 0.3

C

By

Bx

100 N

P

(b)

FC

NC

By

Bx

100 N
FA

NA

Fig. 8–6
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Important Points

  Friction is a tangential force that resists the movement of one 

surface relative to another.

  If no sliding occurs, the maximum value for the friction force is 

equal to the product of the coefficient of static friction and the 

normal force at the surface.

  If sliding occurs at a slow speed, then the friction force is the 

product of the coefficient of kinetic friction and the normal force 

at the surface.

  There are three types of static friction problems. Each of these 

problems is analyzed by first drawing the necessary free-body 

diagrams, and then applying the equations of equilibrium, 

while satisfying the conditions of friction or the possibility of 

tipping.

Depending upon where the man pushes 
on the crate, it will either tip or slip. 
(© Russell C. Hibbeler) 
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Procedure for Analysis

Equilibrium problems involving dry friction can be solved using the 

following procedure.

Free-Body Diagrams.
  Draw the necessary free-body diagrams, and unless it is stated in 

the problem that impending motion or slipping occurs, always 

show the frictional forces as unknowns (i.e., do not assume 

F = mN).

  Determine the number of unknowns and compare this with the 

number of available equilibrium equations.

  If there are more unknowns than equations of equilibrium, it will 

be necessary to apply the frictional equation at some, if not all, 

points of contact to obtain the extra equations needed for a 

complete solution.

  If the equation F = mN is to be used, it will be necessary to show 

F acting in the correct sense of direction on the free-body 

diagram.

Equations of Equilibrium and Friction.
  Apply the equations of equilibrium and the necessary frictional 

equations (or conditional equations if tipping is possible) and 

solve for the unknowns.

  If the problem involves a three-dimensional force system such 

that it becomes difficult to obtain the force components or the 

necessary moment arms, apply the equations of equilibrium using 

Cartesian vectors.
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The uniform crate shown in Fig. 8–7a has a mass of 20 kg. If a force 

P = 80 N is applied to the crate, determine if it remains in equilibrium. 

The coefficient of static friction is ms = 0.3.

0.8 m
P � 80 N

0.2 m

30�

(a)

Fig. 8–7

SOLUTION
Free-Body Diagram. As shown in Fig. 8–7b, the resultant normal 

force NC must act a distance x from the crate’s center line in order to 

counteract the tipping effect caused by P. There are three unknowns, 
F, NC, and x, which can be  determined strictly from the three equations 

of equilibrium.

Equations of Equilibrium.

S+ �Fx = 0; 80 cos 30� N - F = 0

+ c�Fy = 0; -80 sin 30� N + NC - 196.2 N = 0

  a+�MO = 0;   80 sin 30� N(0.4 m) -  80 cos 30� N(0.2 m) +  NC (x) = 0

Solving, 

 F = 69.3 N

 NC = 236.2 N

 x = -0.00908 m = -9.08 mm

Since x is negative it indicates the resultant normal force acts (slightly) 

to the left of the crate’s center line. No tipping will occur since 

x 6 0.4 m. Also, the maximum frictional force which can be developed 

at the surface of contact is Fmax = ms NC = 0.3(236.2 N) = 70.9 N. 
Since F = 69.3 N 6 70.9 N, the crate will not slip, although it is very 

close to doing so.

P � 80 N

0.2 m

30�

(b)

196.2 N

0.4 m 0.4 m

NC

x

F
O

EXAMPLE   8.1
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(a)

u � 25�
2.5 ft

G

1.5 ft
1.5 ft

(b)

(c)

2.5 ft

G

O

x

1.5 ft
1.5 ft

W 25�

N

F

Fig. 8–8

It is observed that when the bed of the dump truck is raised to an 

angle of u = 25� the vending machines will begin to slide off the bed, 

Fig. 8–8a. Determine the static coefficient of friction between a 

vending machine and the surface of the truckbed.

EXAMPLE   8.2

SOLUTION
An idealized model of a vending machine resting on the truckbed is 

shown in Fig. 8–8b. The dimensions have been measured and the 

center of gravity has been located. We will assume that the vending 

machine weighs W.

Free-Body Diagram. As shown in Fig. 8–8c, the dimension x is used 

to locate the position of the resultant normal force N. There are four 

unknowns, N, F, ms, and x.

Equations of Equilibrium.

  +R�Fx = 0; W  sin 25� - F = 0 (1)

  +Q�Fy = 0; N - W  cos 25� = 0 (2)

a+�MO = 0; -W  sin 25�(2.5 ft) + W  cos 25�(x) = 0 (3)

Since slipping impends at u = 25�, using Eqs. 1 and 2, we have

 Fs = ms N;  W  sin 25� = ms(W  cos 25�)

  ms = tan 25� = 0.466 Ans.

The angle of u = 25� is referred to as the angle of repose, and by 

comparison, it is equal to the angle of static friction, u = fs. Notice 

from the calculation that u is independent of the weight of the vending 

machine, and so knowing u provides a convenient method for 

determining the coefficient of static friction.

NOTE: From Eq. 3, we find x = 1.17 ft. Since 1.17 ft 6 1.5 ft, indeed 

the vending machine will slip before it can tip as observed in Fig. 8–8a.

(© Russell C. Hibbeler)
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The uniform 10-kg ladder in Fig. 8–9a rests against the smooth wall 

at B, and the end A rests on the rough horizontal plane for which the 

coefficient of static friction is ms = 0.3. Determine the angle of 

inclination u of the ladder and the normal reaction at B if the ladder is 

on the verge of slipping.

4 m

B

A

(a)

u

Fig. 8–9

EXAMPLE   8.3

A

(b)

NB

NA

FA

 (4 m) sin u

 (2 m) cos u  (2 m) cos u

10(9.81) N

u

SOLUTION
Free-Body Diagram. As shown on the free-body diagram, Fig. 8–9b, 

the frictional force FA must act to the right since impending motion at A 

is to the left.

Equations of Equilibrium and Friction. Since the ladder is on the 

verge of slipping, then FA = msNA = 0.3NA . By inspection, NA  can be 

obtained directly.

+ c�Fy = 0; NA - 10(9.81) N = 0 NA = 98.1 N

Using this result, FA = 0.3(98.1 N) = 29.43 N. Now NB can be found.

S+ �Fx = 0; 29.43 N - NB = 0

 NB = 29.43 N = 29.4 N Ans.

Finally, the angle u can be determined by summing moments about 

point A.

a+�MA = 0; (29.43 N)(4 m) sin u - [10(9.81) N](2 m) cos u = 0

 
sin u

cos u
 = tan u = 1.6667

 u = 59.04� = 59.0�  Ans.
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0.75 m

0.25 m
P

B

(c)

C

400 N

NC

FC

FB

Fig. 8–10

200 N/m

0.75 m

B

P

4 m

0.25 m
C

A

(a)

Beam AB is subjected to a uniform load of 200 N>m and is supported 

at B by post BC, Fig. 8–10a. If the coefficients of static friction at B 

and C are mB = 0.2 and mC = 0.5, determine the force P needed to 

pull the post out from under the beam. Neglect the weight of the 

members and the thickness of the beam.

EXAMPLE   8.4

SOLUTION
Free-Body Diagrams. The free-body diagram of the beam is shown 

in Fig. 8–10b. Applying �MA = 0, we obtain NB = 400 N. This result 

is shown on the free-body diagram of the post, Fig. 8–10c. Referring to 

this member, the four unknowns FB, P, FC, and NC are determined from 

the three equations of equilibrium and one frictional equation applied 

either at B or C.

Equations of Equilibrium and Friction.

S+ �Fx = 0; P - FB - FC = 0 (1)

+ c�Fy = 0; NC - 400 N = 0 (2)

a+�MC = 0; -P(0.25 m) + FB(1 m) = 0 (3)

(Post Slips at B and Rotates about C.) This requires FC … mCNC and

FB = mBNB; FB = 0.2(400 N) = 80 N

Using this result and solving Eqs. 1 through 3, we obtain

 P = 320 N

 FC = 240 N

 NC = 400 N

Since FC = 240 N 7 mCNC = 0.5(400 N) = 200 N, slipping at C 
occurs. Thus the other case of movement must be investigated.

(Post Slips at C and Rotates about B.) Here FB … mBNB and

FC = mCNC; FC = 0.5NC (4)

Solving Eqs. 1 through 4 yields

 P = 267 N Ans.
 NC = 400 N
 FC = 200 N
 FB = 66.7 N

Obviously, this case occurs first since it requires a smaller value for P.

800 N

2 m

(b)

Ax

Ay

A
2 m

NB � 400 N

FB
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A

C
B

(a)

P

30�

C

y

x

(b)

P

FAC

FA

NA

FBC

3(9.81) N
FAC � 1.155P

FBC � 0.5774P

FB

NB

9(9.81) N

30�

30�

Fig. 8–11

Blocks A and B have a mass of 3 kg and 9 kg, respectively, and are 

connected to the weightless links shown in Fig. 8–11a. Determine the 

largest vertical force P that can be applied at the pin C without causing 

any movement. The coefficient of static friction between the blocks 

and the contacting surfaces is ms = 0.3.

SOLUTION
Free-Body Diagram. The links are two-force members and so the 

free-body diagrams of pin C and blocks A and B are shown in  Fig. 8–11b. 

Since the horizontal component of FAC tends to move block A to the 

left, FA must act to the right. Similarly, FB must act to the left to oppose 

the tendency of motion of block B to the right, caused by FBC. There 

are seven unknowns and six available force equilibrium equations, two 

for the pin and two for each block, so that only one frictional 

equation is needed.

Equations of Equilibrium and Friction. The force in links AC and 

BC can be related to P by considering the equilibrium of pin C.

+ c�Fy = 0; FAC cos 30� -  P = 0; FAC = 1.155P

S+ �Fx = 0; 1.155P sin 30� -  FBC = 0; FBC = 0.5774P

Using the result for FAC, for block A,

S+ �Fx = 0; FA  -  1.155P sin 30� = 0; FA = 0.5774P (1)

+ c�Fy = 0; NA  -  1.155P cos 30� -  3(9.81 N) = 0;

 NA = P +  29.43 N (2)

Using the result for FBC, for block B,

S+ �Fx = 0; (0.5774P) - FB = 0; FB = 0.5774P (3)

+ c�Fy = 0; NB - 9(9.81) N = 0; NB = 88.29 N

Movement of the system may be caused by the initial slipping of either 

block A or block B. If we assume that block A slips first, then

 FA = ms NA = 0.3NA  (4)

Substituting Eqs. 1 and 2 into Eq. 4,

  0.5774P = 0.3(P + 29.43)

  P = 31.8 N Ans.

Substituting this result into Eq. 3, we obtain FB = 18.4 N. Since the 

maximum static frictional force at B is (FB)max = msNB =  

0.3(88.29 N) = 26.5 N 7 FB, block B will not slip. Thus, the above 

assumption is correct. Notice that if the inequality were not satisfied, 

we would have to assume slipping of block B and then solve for P.

EXAMPLE   8.5
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P8–3. Determine the force P to move block B.

A

B

C

P

W � 200 N 

ms � 0.2

ms � 0.1

W � 100 N 

W � 100 N 

ms � 0.2

Prob. P8–3

P8–4. Determine the force P needed to cause impending 

motion of the block.

(a)

1 m

2 m

P

W � 200 N 

ms � 0.3

(b)

1 m

1 m

P

W � 100 N 

ms � 0.4

Prob. P8–4

P8–1. Determine the friction force at the surface of contact.

W � 200 N  

(a)

ms � 0.3
mk � 0.2

500 N

4
3

5

 

(b)

W � 40 N 

ms � 0.9
mk � 0.6

100 N

4
3

5

Prob. P8–1

P8–2. Determine M to cause impending motion of 

the cylinder.

1 m

A

BM

Smooth

W � 100 N 

ms � 0.1

Prob. P8–2

PRELIMINARY PROBLEMS



416  CHAPTER 8  FR ICT ION

8

All problem solutions must include FBDs.

F8–1. Determine the friction developed between the 50-kg 

crate and the ground if a) P = 200 N, and b) P = 400 N. The 

coefficients of static and kinetic friction between the crate 

and the ground are ms = 0.3 and mk = 0.2.

4
3

5
P

Prob. F8–1

F8–2. Determine the minimum force P to prevent the 

30-kg rod AB from sliding. The contact surface at B is 

smooth, whereas the coefficient of static friction between 

the rod and the wall at A is ms = 0.2.

 3 m

A

BP

4 m

Prob. F8–2

F8–3. Determine the maximum force P that can be applied 

without causing the two 50-kg crates to move. The coefficient 

of static friction between each crate and the ground is 

ms = 0.25.

BA

30�

P

Prob. F8–3

F8–4. If the coefficient of static friction at contact points A 

and B is ms = 0.3, determine the maximum force P that can 

be applied without causing the 100-kg spool to move.

P

0.6 m
0.9 m

B

A

Prob. F8–4

F8–5. Determine the maximum force P that can be 

applied without causing movement of the 250-lb crate that 

has a center of gravity at G. The coefficient of static friction 

at the floor is ms = 0.4.

1.5 ft 1.5 ft

2.5 ft

3.5 ft
4.5 ft

P

A

G

Prob. F8–5

FUNDAMENTAL PROBLEMS
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F8–6. Determine the minimum coefficient of static friction 

between the uniform 50-kg spool and the wall so that the 

spool does not slip.

A

B

0.6 m

0.3 m

60�

Prob. F8–6

F8–7. Blocks A, B, and C have weights of 50 N, 25 N, and 

15 N, respectively. Determine the smallest horizontal force P 

that will cause impending motion. The coefficient of static 

friction between A and B is ms = 0.3, between B and C, 

m=s = 0.4, and between block C and the ground, m==s = 0.35.

P

A

B

C

D

Prob. F8–7

F8–8. If the coefficient of static friction at all contacting 

surfaces is ms, determine the inclination u at which the 

identical blocks, each of weight W, begin to slide.

A

B

u

Prob. F8–8

F8–9. Blocks A and B have a mass of 7 kg and 10 kg, 

respectively. Using the coefficients of static friction 

indicated, determine the largest force P which can be 

applied to the cord without causing motion. There are 

pulleys at C and D.

400 mm

300 mm

A

D

C P

mAB � 0.3

mA � 0.1

B

Prob. F8–9
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8–3. The mine car and its contents have a total mass of 

6 Mg and a center of gravity at G. If the coefficient of static 

friction between the wheels and the tracks is ms = 0.4 when 

the wheels are locked, find the normal force acting on the 

front wheels at B and the rear wheels at A when the brakes 

at both A and B are locked. Does the car move?

0.15 mA

G

B

0.9 m

0.6 m

10 kN

1.5 m

Prob. 8–3

*8–4. The winch on the truck is used to hoist the garbage 

bin onto the bed of the truck. If the loaded bin has a weight 

of 8500 lb and center of gravity at G, determine the force in 

the cable needed to begin the lift. The coefficients of static 

friction at A and B are mA = 0.3 and mB = 0.2, respectively. 

Neglect the height of the support at A.

G

12 ft10 ft BA

30� 

Prob. 8–4

All problem solutions must include FBDs.

8–1. Determine the maximum force P the connection can 

support so that no slipping occurs between the plates. There 

are four bolts used for the connection and each is tightened 

so that it is subjected to a tension of 4 kN. The coefficient of 

static friction between the plates is ms = 0.4.

P
P
2
P
2

Prob. 8–1

8–2. The tractor exerts a towing force T = 400 lb. 

Determine the normal reactions at each of the two front 

and two rear tires and the tractive frictional force F on each 

rear tire needed to pull the load forward at constant velocity. 

The tractor has a weight of 7500 lb and a center of gravity 

located at GT. An additinal weight of 600 lb is added to its 

front having a center of gravity at GA. Take ms = 0.4. 

The front wheels are free to roll.

4 ft
3 ft

5 ft

2.5 ft
A

C B

T

F

GA

GT

Prob. 8–2

PROBLEMS
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*8–8. The block brake consists of a pin-connected lever 

and friction block at B. The coefficient of static friction 

between the wheel and the lever is ms = 0.3, and a torque of 

5 N # m is applied to the wheel. Determine if the brake can 

hold the wheel stationary when the force applied to the 

lever is (a) P = 30 N, (b) P = 70 N.

200 mm

50 mm

400 mm

P
150 mm

O

B

A

5 N�m

Prob. 8–8

8–9. The pipe of weight W is to be pulled up the inclined 

plane of slope a using a force P. If P acts at an angle f, show 

that for slipping P = W sin(a + u)>cos(f - u), where u is 

the angle of static friction; u = tan-1 ms.

8–10. Determine the angle f at which the applied force P 

should act on the pipe so that the magnitude of P is as small 

as possible for pulling the pipe up the incline. What is the 

corresponding value of P? The pipe weighs W and the slope 

a is known. Express the answer in terms of the angle of 

kinetic friction, u = tan-1 mk.

P

f

a

Probs. 8–9/10

8–5. The automobile has a mass of 2 Mg and center of 

mass at G. Determine the towing force F required to move 

the car if the back brakes are locked, and the front wheels 

are free to roll. Take ms = 0.3.

8–6. The automobile has a mass of 2 Mg and center of 

mass at G. Determine the towing force F required to move 

the car. Both the front and rear brakes are locked. 

Take ms = 0.3.

F

0.75 m

30�

0.3 m 0.6 m
G

A

C

B
1.50 m1 m

Probs. 8–5/6

8–7. The block brake consists of a pin-connected lever and 

friction block at B. The coefficient of static friction between 

the wheel and the lever is ms = 0.3, and a torque of 5 N # m 

is applied to the wheel. Determine if the brake can hold the 

wheel stationary when the force applied to the lever is 

(a) P = 30 N, (b) P = 70 N.

200 mm

50 mm

400 mm

P
150 mm

O

B

A

5 N�m

Prob. 8–7
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8–13. If a torque of M = 300 N # m is applied to the 

flywheel, determine the force that must be developed in the 

hydraulic cylinder CD to prevent the flywheel from rotating. 

The coefficient of static friction between the friction pad 

at B and the flywheel is ms = 0.4.

30�

0.6 m

60 mm

0.3 m M � 300 N�m

A

D

B
C

1 m

O

Prob. 8–13

8–14. The car has a mass of 1.6 Mg and center of mass at G. 

If the coefficient of static friction between the shoulder of the 

road and the tires is ms = 0.4, determine the greatest slope u 

the shoulder can have without causing the car to slip or tip 

over if the car travels along the shoulder at constant velocity.

A

B
G

5 ft

2.5 ft

u

Prob. 8–14

8–11. Determine the maximum weight W the man can lift 

with constant velocity using the pulley system, without and 

then with the “leading block” or pulley at A. The man has a 

weight of 200 lb and the coefficient of static friction between 

his feet and the ground is ms = 0.6.

(a)

45�
C

B

C

B

(b)

w

A

w

Prob. 8–11

*8–12. The block brake is used to stop the wheel from 

rotating when the wheel is subjected to a couple moment M0. 
If the coefficient of static friction between the wheel and the 

block is ms, determine the smallest force P that should 

be applied.

O
M0

P
a

c

b

r

C

Prob. 8–12
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8–18. The spool of wire having a weight of 300 lb rests on 

the ground at B and against the wall at A. Determine the 

force P required to begin pulling the wire horizontally off 

the spool. The coefficient of static friction between the 

spool and its points of contact is ms = 0.25.

8–19. The spool of wire having a weight of 300 lb rests on 

the ground at B and against the wall at A. Determine the 

normal force acting on the spool at A if P = 300 lb. 

The coefficient of static friction between the spool and the 

ground at B is ms = 0.35. The wall at A is smooth.

A

B

O

3 ft

1 ft
P

Probs. 8–18/19

*8–20. The ring has a mass of 0.5 kg and is resting on the 

surface of the table. In an effort to move the ring a normal 

force P from the finger is exerted on it. If this force is directed 

towards the ring’s center O as shown, determine its magnitude 

when the ring is on the verge of slipping at A. The coefficient 

of static friction at A is mA = 0.2 and at B, mB = 0.3.

75 mm

O

B

P

60�

A

Prob. 8–20

8–15. The log has a coefficient of state friction of ms = 0.3 

with the ground and a weight of 40 lb>ft. If a man can pull 

on the rope with a maximum force of 80 lb, determine the 

greatest length l of log he can drag.

Prob. 8–15

*8–16. The 180-lb man climbs up the ladder and stops at the 

position shown after he senses that the ladder is on the verge 

of slipping. Determine the inclination u of the ladder if the 

coefficient of static friction between the friction pad A and the 

ground is ms = 0.4. Assume the wall at B is smooth. The center 

of gravity for the man is at G. Neglect the weight of the ladder.

8–17. The 180-lb man climbs up the ladder and stops at the 

position shown after he senses that the ladder is on the verge 

of slipping. Determine the coefficient of static friction 

between the friction pad at A and ground if the inclination of 

the ladder is u = 60� and the wall at B is smooth. The center 

of gravity for the man is at G. Neglect the weight of the ladder.

G

A

10 ft

3 ft

u

B

Probs. 8–16/17
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8–23. The beam is supported by a pin at A and a roller at B 

which has negligible weight and a radius of 15 mm. If the 

coefficient of static friction is mB = mC = 0.3, determine 

the largest angle u of the incline so that the roller does not 

slip for any force P applied to the beam.

A

2 m 2 m

P

B

C
u

Prob. 8–23

*8–24. The uniform thin pole has a weight of 30 lb and a 

length of 26 ft. If it is placed against the smooth wall and on 

the rough floor in the position d = 10 ft, will it remain in 

this position when it is released? The coefficient of static 

friction is ms = 0.3.

8–25. The uniform pole has a weight of 30 lb and a length 

of 26 ft. Determine the maximum distance d it can be placed 

from the smooth wall and not slip. The coefficient of static 

friction between the floor and the pole is ms = 0.3.

A

d

B

26 ft

Probs. 8–24/25

8–21. A man attempts to support a stack of books 

horizontally by applying a compressive force of F = 120 N 

to the ends of the stack with his hands. If each book has a 

mass of 0.95 kg, determine the greatest number of books 

that can be supported in the stack. The coefficient of static 

friction between his hands and a book is (ms)h = 0.6 and 

between any two books (ms)b = 0.4.

F � 120 NF � 120 N

Prob. 8–21

8–22. The tongs are used to lift the 150-kg crate, whose 

center of mass is at G. Determine the least coefficient of 

static friction at the pivot blocks so that the crate can be lifted.

275 mm

300 mm

30�

500 mm

500 mm

A

C D

F

H

E

B

P

G

Prob. 8–22



 8.2 PROBLEMS INVOLVING DRY FRICTION 423

8

8–29. The friction pawl is pinned at A and rests against the 

wheel at B. It allows freedom of movement when the wheel 

is rotating counterclockwise about C. Clockwise rotation is 

prevented due to friction of the pawl which tends to bind 

the wheel. If (ms)B =  0.6, determine the design angle u 

which will prevent clockwise motion for any value of 

applied moment M. Hint: Neglect the weight of the pawl so 

that it becomes a two-force member.

u

M

B

C

20�

A

Prob. 8–29

8–30. Two blocks A and B have a weight of 10 lb and 6 lb, 

respectively. They are resting on the incline for which the 

coefficients of static friction are mA = 0.15 and mB = 0.25. 
Determine the incline angle u for which both blocks begin 

to slide. Also find the required stretch or compression in the 

connecting spring for this to occur. The spring has a stiffness 

of k = 2 lb>ft.
8–31. Two blocks A and B have a weight of 10 lb and 6 lb, 

respectively. They are resting on the incline for which the 

coefficients of static friction are mA = 0.15 and mB = 0.25. 
Determine the angle u which will cause motion of one of 

the blocks. What is the friction force under each of the 

blocks when this occurs? The spring has a stiffness of 

k = 2 lb>ft and is originally unstretched.

u

A

Bk � 2 lb/ft

Probs. 8–30/31

8–26. The block brake is used to stop the wheel from 

rotating when the wheel is subjected to a couple moment 

M0 = 360 N # m. If the coefficient of static friction between 

the wheel and the block is ms = 0.6, determine the smallest 

force P that should be applied.

8–27. Solve Prob. 8–26 if the couple moment M0 is applied 

counterclockwise.

O

0.05 m

0.3 m

P
1 m

0.4 m

CC

M0

B

Probs. 8–26/27

*8–28. A worker walks up the sloped roof that is defined 

by the curve y = (5e0.01x) ft, where x is in feet. Determine 

how high h he can go without slipping. The coefficient of 

static friction is ms = 0.6.

y

x

5 ft

h

Prob. 8–28
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*8–36. Determine the minimum force P needed to push 

the tube E up the incline. The force acts parallel to the 

plane, and the coefficients of static friction at the contacting 

surfaces are mA = 0.2, mB = 0.3, and mC = 0.4. The 100-kg 

roller and 40-kg tube each have a radius of 150 mm.

A

E

B

C

30�P

Prob. 8–36

8–37. The coefficients of static and kinetic friction between 

the drum and brake bar are ms = 0.4 and mk = 0.3, 
respectively. If M = 50 N # m and P = 85 N, determine the 

horizontal and vertical components of reaction at the pin O. 

Neglect the weight and thickness of the brake. The drum has 

a mass of 25 kg.

8–38. The coefficient of static friction between the drum 

and brake bar is ms = 0.4. If the moment M = 35 N # m, 

determine the smallest force P that needs to be applied to 

the brake bar in order to prevent the drum from rotating. 

Also determine the corresponding horizontal and vertical 

components of reaction at pin O. Neglect the weight and 

thickness of the brake bar. The drum has a mass of 25 kg.

A

M

P

B
O 125 mm

700 mm

500 mm

300 mm

Probs. 8–37/38

*8–32. Determine the smallest force P that must be 

applied in order to cause the 150-lb uniform crate to move. 

The coefficent of static friction between the crate and the 

floor is ms = 0.5.

8–33. The man having a weight of 200 lb pushes 

horizontally on the crate. If the coefficient of static friction 

between the 450-lb crate and the floor is ms = 0.3 and 

between his shoes and the floor is m�s = 0.6, determine if he 

can move the crate.

3 ft

2 ft

P

Probs. 8–32/33

8–34. The uniform hoop of weight W is subjected to the 

horizontal force P. Determine the coefficient of static 

friction between the hoop and the surface of A and B if the 

hoop is on the verge of rotating.

8–35. Determine the maximum horizontal force P that 

can be applied to the 30-lb hoop without causing it to rotate. 

The coefficient of static friction between the hoop and the 

surfaces A and B is ms = 0.2. Take r = 300 mm.

r

A

B

P

B

A

Probs. 8–34/35
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8–41. If the coefficient of static friction at A and B is 

ms = 0.6, determine the maximum angle u so that the frame 

remains in equilbrium, regardless of the mass of the cylinder. 

Neglect the mass of the rods.
C

L L

A B

uu

Prob. 8–41
8–42. The 100-kg disk rests on a surface for which mB = 0.2. 
Determine the smallest vertical force P that can be applied 

tangentially to the disk which will cause motion to impend.

0.5 m

B

A

P

Prob. 8–42
8–43. Investigate whether the equilibrium can be 

maintained. The uniform block has a mass of 500 kg, and 

the coefficient of static friction is ms = 0.3.

A

800 mm

200 mm3

4
5

600 mmB

Prob. 8–43

8–39. Determine the smallest coefficient of static friction 

at both A and B needed to hold the uniform 100-lb bar 

in  equilibrium. Neglect the thickness of the bar. 

Take mA = mB = m.

13 ft

3 ft

B

A

5 ft

Prob. 8–39

*8–40. If u = 30�, determine the minimum coefficient of 

static friction at A and B so that equilibrium of the 

supporting frame is maintained regardless of the mass of 

the cylinder. Neglect the mass of the rods.

C

L L

A B

uu

Prob. 8–40
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8–46. The beam AB has a negligible mass and thickness 

and is subjected to a triangular distributed loading. It is 

supported at one end by a pin and at the other end by a post 

having a mass of 50 kg and negligible thickness. Determine 

the two coefficients of static friction at B and at C so that 

when the magnitude of the applied force is increased to  

P = 150 N, the post slips at both B and C simultaneously.

2 m
400 mm

800 N/m

C

B

300 mm

A
P

4
35

Prob. 8–46

8–47. Crates A and B weigh 200 lb and 150 lb, respectively. 

They are connected together with a cable and placed on the 

inclined plane. If the angle u is gradually increased, 

determine u when the crates begin to slide. The coefficients 

of static friction between the crates and the plane are 

mA = 0.25 and mB = 0.35.

B

A
C

D

u

Prob. 8–47

*8–44. The homogenous semicylinder has a mass of 20 kg 

and mass center at G. If force P is applied at the edge, and 

r = 300 mm, determine the angle u at which the semicylinder 

is on the verge of slipping. The coefficient of static friction 

between the plane and the cylinder is ms = 0.3. Also, what is 

the corresponding force P for this case?

Gu

P

r

4r
3p

Prob. 8–44

8–45. The beam AB has a negligible mass and thickness 

and is subjected to a triangular distributed loading. It is 

supported at one end by a pin and at the other end by a post 

having a mass of 50 kg and negligible thickness. Determine 

the minimum force P needed to move the post. The 

coefficients of static friction at B and C are mB = 0.4 and 

mC = 0.2, respectively.

2 m
400 mm

800 N/m

C

B

300 mm

A
P

4
35

Prob. 8–45
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8–51. Beam AB has a negligible mass and thickness, and 

supports the 200-kg uniform block. It is pinned at A and 

rests on the top of a post, having a mass of 20 kg and 

negligible thickness. Determine the minimum force P 

needed to move the post. The coefficients of static friction 

at B and C are mB = 0.4 and mC = 0.2, respectively.

*8–52. Beam AB has a negligible mass and thickness, and 

supports the 200-kg uniform block. It is pinned at A and 

rests on the top of a post, having a mass of 20 kg and 

negligible thickness. Determine the two coefficients of static 

friction at B and at C so that when the magnitude of the 

applied force is increased to P = 300 N, the post slips at 

both B and C simultaneously.

1.5 m 1.5 m

C

B

0.75 m

1 m

A P

4
35

Probs. 8–51/52

8–53. Determine the smallest couple moment that can be 

applied to the 150-lb wheel that will cause impending 

motion. The uniform concrete block has a weight of 300 lb. 

The coefficients of static friction are mA = 0.2, mB = 0.3, 

and between the concrete block and the floor, m = 0.4.

1 ft

5 ft
B

A

1.5 ft

M

Prob. 8–53

*8–48. Two blocks A and B, each having a mass of 5 kg, 

are connected by the linkage shown. If the coefficient of 

static friction  at the contacting surfaces is ms = 0.5, 

determine the largest force P that can be applied to pin C of 

the linkage without causing the blocks to move. Neglect the 

weight of the links.

P

30�
30�

30�

A

C
B

Prob. 8–48

8–49. The uniform crate has a mass of 150 kg. If the 

coefficient of static friction between the crate and the floor 

is ms = 0.2, determine whether the 85-kg man can move the 

crate. The coefficient of static friction between his shoes and 

the floor is m�s = 0.4. Assume the man only exerts a 

horizontal force on the crate.

8–50. The uniform crate has a mass of 150 kg. If the coefficient 

of static friction between the crate and the floor is ms = 0.2, 

determine the smallest mass of the man so he can move the 

crate. The coefficient of static friction between his shoes and 

the floor is m�s = 0.45. Assume the man exerts only a 

horizontal force on the crate. 

2.4 m

1.2 m

1.6 m

Probs. 8–49/50
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*8–56. The disk has a weight W and lies on a plane that 

has a coefficient of static friction m. Determine the 

maximum height h to which the plane can be lifted without 

causing the disk to slip.

z

x

y

2a

a
h

Prob. 8–56

8–57. The man has a weight of 200 lb, and the coefficient 

of static friction between his shoes and the floor is ms = 0.5. 
Determine where he should position his center of gravity G 

at d in order to exert the maximum horizontal force on the 

door. What is this force?

d

3 ft

G

Prob. 8–57

8–54. Determine the greatest angle u so that the ladder 

does not slip when it supports the 75-kg man in the position 

shown. The surface is rather slippery, where the coefficient 

of static friction at A and B is ms = 0.3.

A B

C

G

2.5 m

0.25 m

2.5 m

u

Prob. 8–54

8–55. The wheel weighs 20 lb and rests on a surface for 

which mB = 0.2. A cord wrapped around it is attached to 

the top of the 30-lb homogeneous block. If the coefficient of 

static friction at D is mD = 0.3, determine the smallest 

vertical force that can be applied tangentially to the wheel 

which will cause motion to impend.

1.5 ft

1.5 ft

C

DB

A

P

3 ft

Prob. 8–55
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C8–1. Draw the free-body diagrams of each of the two 

members of this friction tong used to lift the 100-kg block.

C8–1 (© Russell C. Hibbeler)

C8–2. Show how to find the force needed to move the top 

block. Use reasonable data and use an equilibrium analysis 

to explain your answer.

C8–2 (© Russell C. Hibbeler)

C8–3. The rope is used to tow the refrigerator. Is it best to 

pull slightly up on the rope as shown, pull horizontally, or 

pull somewhat downwards? Also, is it best to attach the 

rope at a high position as shown, or at a lower position? Do 

an equilibrium analysis to explain your answer.

C8–4. The rope is used to tow the refrigerator. In order to 

prevent yourself from slipping while towing, is it best to pull 

up as shown, pull horizontally, or pull downwards on the 

rope? Do an equilibrium analysis to explain your answer.

C8–3/4 (© Russell C. Hibbeler)

C8–5. Explain how to find the maximum force this man 

can exert on the vehicle. Use reasonable data and use an 

equilibrium analysis to explain your answer.

C8–5 (© Russell C. Hibbeler)

CONCEPTUAL PROBLEMS


