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Course Description 

The course named " Strength of Materials" or "Mechanics of 

Materials" deals with, Concept of stress, Stresses and strains, Axial 

loading and axial deformation, Hook’s law, Statically indeterminate 

members, Stresses due to temperature, Torsion, Internal forces in 

beams, pure bending or Beam theory, Transverse loading and shear 

stresses in beams, beam deflection, Transformation of stresses and 

strains,. Principal stresses and strains, in addition to Axially 

compressed members and buckling of columns.
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Course Objectives 

1. Be aware of the mathematical background for the

different topics of strength of materials introduced in this

course.

2. Understanding of stress concept and types of stresses.

3. Understanding of stress strain relationship and solving

problems.

4. Understanding of internal forces in beams, how to draw

shear force and bending moment diagrams.

5. Understanding of beam analysis, stresses in beams, beam

theory and shear stresses.

6. Understanding of  torsion in shafts, determination of

shear stresses  and twisting angle due to torsion.

7. Understanding of methods of calculation beam deflection.

8. Understanding of transformation of stresses and

constructing of Mohr’s Circle.

9. Understanding of Axially compressed members and

buckling of columns.
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TOPICS 

1. concept of stress

2. Concept of Strain

3. Statically indeterminate problems

4. Thermal stresses

5. Stresses in thin wall vessels, Poison's ratio

6. Beams, shear force and bending moment equations.

7. Shear force and bending moment Diagrams

8. Stresses in Beams, Bending stresses

9. Shear stresses in Beams

10. Deflection of Beams

11. Torsion

12. Buckling of Columns

13. Stress Transformation and Mohr's Circle

14. Problems on Mohr's Circle
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CHAPTER  1 

Stress 

Concept of Stress : Let us introduce the concept of stress, as we know that the main 

problem of engineering mechanics of material is the investigation of the internal 

resistance of the body, i.e. the nature of forces set up within a body to balance the 

effect of the externally applied forces.  

The externally applied forces are termed as loads. These externally applied forces 

may be due to any one or more of the followings:  

(i) due to service conditions

(ii) due to environment in which the component works

(iii) through contact with other members

(iv) due to fluid pressures

(v) due to gravity or inertia forces (Self weight of the structure).

As we know that in mechanics of deformable

solids, externally applied forces acts on a body and 

body suffers a deformation. From equilibrium point 

of view, this action should be opposed or reacted by 

internal forces which are set up within the particles of 

material due to cohesion. These internal forces give 

rise to a concept of stress. Therefore, let us define a 

term stress:  

Stress: 

Let us consider a rectangular bar of some 

cross–sectional area and subjected to some load 

or force (in Newton ). 

Let us imagine that the same rectangular 

bar is assumed to be cut into two halves at 

section XX. Each portion of this rectangular bar 

is in equilibrium under the action of load P and 

the internal forces acting at the section XX has 

been shown.  
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Simple Stress 

Simple stress is expressed as the ratio of the applied force divided by the resisting 

area or : 

σ = Force / Area. 

It is the expression of force per unit area to structural members that are subjected to 

external forces and/or induced forces. Here we are using an assumption that the total 

force or total load carried by the bar is uniformly distributed over its cross_section. 

Units : 

The basic units of stress in S.I units i.e. (International System) are N / m
2
 (or Pa , 

Pascal)  

MPa = 10
6
 Pa   ,  GPa = 10

9
 Pa    ,  KPa = 10

3
 Pa

Sometimes  N/mm
2
 units are also used, because this is an equivalent to MPa ,

while US customary unit is pound per square inch , psi. (lb/in
2
).

Simple stress can be classified as normal stress, shear stress, and bearing stress. 

Normal stress  develops when a force is applied perpendicular to the cross-sectional 

area of the material. If the force is going to pull the material, the stress is said to be 

tensile stress and compressive stress develops when the material is being 

compressed by two opposing forces.  

Shear stress is developed if the applied force is 

parallel to the resisting area. Example is the 

bolt that holds the tension rod in its anchor. 

Another condition of shearing is when we twist 

a bar along its longitudinal axis. This type of 

shearing is called torsion and covered in 

Chapter 3.  

Another type of simple stress is the bearing 

stress, it is  the contact pressure between two 

bodies. ( It is  in fact a compressive stress ). 

Suspension bridges are good example of structures that carry these stresses. The 

weight of the vehicle is carried by the bridge deck and passes the force to the stringers 

(vertical cables), which in turn, supported by the main suspension cables. The 

suspension cables then transferred the force into bridge towers. 



STREMGTH OF MATERIALS 

Normal Stress 

The resisting area is perpendicular to the applied force, thus normal. There are two 

types of normal stresses; tensile stress and compressive stress. Tensile stress applied 

to bar tends the bar to elongate while compressive stress tend to shorten the bar.  

σ = Force / Area 

σ = P/ A 

Bar in Tension  Bar in Compression 

where P is the applied normal load in Newton and A is the area in mm
2
. The

maximum stress in tension or compression occurs over a section normal to the load.  

EXAMPLE PROBLEMS IN NORMAL  STRESS 

Example 101: A hollow steel tube with an inside diameter of 100 mm must carry a 

tensile load of 400 kN. Determine the outside diameter of the tube if the stress is 

limited to 120 MN/m
2
.

Solution 101: 
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Example 102 A homogeneous 800 kg bar AB is supported at either end by a cable as 

shown in Fig. P-105. Calculate the smallest area of each cable if the stress is not to 

exceed 90 MPa in bronze and 120 MPa in steel.  

Solution: 

Example 103   An aluminum rod is rigidly attached between a steel rod and a bronze 

rod as shown in Fig. P-108. Axial loads are applied at the positions indicated. Find the 

maximum value of P that will not exceed a stress in steel of 140 MPa, in aluminum of 

90 MPa, or in bronze of 100 MPa.  

Solution: 
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Example 104 A 12-inches square steel bearing plate lies between an 8-inches 

diameter wooden post and a concrete footing as shown in Fig. P-110. Determine the 

maximum value of the load P if the stress in wood is limited to 1800 psi and that in 

concrete to 650 psi.  

Shearing Stress  

Forces parallel to the area resisting the force cause shearing stress. It differs to tensile 

and compressive stresses, which are caused by forces perpendicular to the area on 

which they act. Shearing stress is also known as tangential stress.    

where  V  is the resultant shearing force which passes through the centroid of the area 

A being sheared. 
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SOLVED EXAMPLES IN SHEARING STRESS 

Example 105 :  What force is required to punch a 20-mm-diameter hole in a plate that 

is 25 mm thick?   The shear strength is 350 MN/m
2
.

Solution: 

Example 106 Find the smallest diameter bolt that can be used in the clevis shown in 

Fig. 1-11b if P = 400 kN. The shearing strength of the bolt is 300 MPa.  

Solution : 

Example 107  Compute the shearing stress in the pin 

at B for the member supported as shown in Fig. The 

pin diameter is 20 mm.  
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Solution : 
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SOLVED EXAMPLES IN BEARING STRESS 

Example 125 In Fig. 1-12, assume that a 20-mm-diameter rivet joins the plates that 

are each 110 mm wide. The allowable stresses are 120 MPa for bearing in the plate 

material and 60 MPa for shearing of rivet. Determine (a) the minimum thickness of 

each plate; and (b) the largest average tensile stress in the plates.  

Solution 

Example 126 The lap joint shown in Fig. P-126 is fastened by four ¾-in.-diameter 

rivets. Calculate the maximum safe load P that can be applied if the shearing stress in 

the rivets is limited to 14 ksi and the bearing stress in the plates is limited to 18 ksi. 

Assume the applied load is uniformly distributed among the four rivets. 
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Solution 

Example 127: In the clevis shown in Fig. 1-11b, find the 

minimum bolt diameter and the minimum thickness of each yoke 

that will support a load P = 14 kips without exceeding a shearing 

stress of 12 ksi and a bearing stress of 20 ksi. 

Solution: 
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Thin-Walled Pressure Vessels 

      A tank or pipe carrying a fluid or gas under a pressure is subjected to tensile 

forces, which resist bursting, developed across longitudinal and transverse sections.  

Tangential Stress(Circumferential Stress): 

Consider the tank shown being subjected to an internal pressure p. The length of 

the tank is L and the wall thickness is t. Isolating the right half of the tank: 

F= pA = pDL 

 T = σtAwall  = σt tL 

∑FH = 0 

F = 2T 

pDL = 2(σt tL) 

σt = pD/2t 

If there exist an external pressure po and an internal pressure pi, the formula may be 

expressed as:  

LONGITUDINAL STRESS,  σL 

     Consider the free body diagram in the transverse section of the tank: 
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σL

The total force acting at the rear of the tank F must equal 

to the total longitudinal stress on the wall PT = σL Awall. 

Since t is so small compared to D, the area of the wall is 

close to πDt  .    

If there exist an external pressure po and an internal pressure pi , the formula may be 

expressed as:  

It can be observed that the tangential stress is twice that of the longitudinal stress. 

   σt = 2 σL 

Spherical Shell:  If a spherical tank of diameter D and thickness t 

contains gas under a pressure of p, the stress at the wall can be 

expressed as:  
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SOLVED EXAMPLES IN THIN WALLED PREASSURE VESSELS 

Example 133:  A cylindrical steel pressure vessel 400 mm in diameter with a wall 

thickness of 20 mm, is subjected to an internal pressure of 4.5 MN/m2. (a) Calculate 

the tangential and longitudinal stresses in the steel. (b) To what value may the internal 

pressure be increased if the stress in the steel is limited to 120 MN/m
2
? (c) If the

internal pressure were increased until the vessel burst, sketch the type of fracture that 

would occur.  

Solution 
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CHAPTER 2 

STRAIN 

Simple Strain 

Strain (  ) is the ratio of the change in length caused by the applied force, 

to the original length.(Also known as unit deformation). 

where δ is the deformation and L is the original length, thus ε is 

dimensionless.  

Stress-Strain Diagram 

Suppose that a metal specimen be placed in tension-compression testing 

machine. As the axial load is gradually increased in increments, the total 

elongation over the gage length is measured at each increment of the load and 

this is continued until failure of the specimen takes place. Knowing the 

original cross-sectional area and length of the specimen, the normal stress σ 

and the strain ε can be obtained. The graph of these quantities with the stress σ 

along the y-axis and the strain ε along the x-axis is called the stress-strain 

diagram. The stress-strain diagram differs in form for various materials. The 

diagram shown below is that for a medium carbon structural steel.  

Metallic engineering materials are classified as either ductile or brittle 

materials. A ductile material is one having relatively large tensile strains up to 

the point of rupture like structural steel and aluminum, whereas brittle 
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materials has a relatively small strain up to the point of rupture like cast iron 

and concrete. An arbitrary strain of 0.05 mm/mm is frequently taken as the 

dividing line between these two classes. 

Proportional Limit (Hooke's Law) 

From the origin o to the point called proportional limit, the stress-strain 

curve is a straight line. This linear relation between elongation and the axial 

force causing was first noticed by Sir Robert Hooke in 1678 and is called 

Hooke's Law that within the proportional limit, the stress is directly 

proportional to strain or: 

The constant of proportionality k is called the Modulus of Elasticity E or 

Young's Modulus and is equal to the slope of the stress-strain diagram from O 

to P. Then : 

Elastic Limit 

The elastic limit is the limit beyond which the material will no longer go 

back to its original shape when the load is removed, or it is the maximum 

stress that may be developed such that there is nonpermanent (or residual) 
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deformation when the load is entirely removed. 

Elastic and Plastic Ranges

The region in stress-strain diagram from O to P is called the elastic range. The 

region from P to R is called the plastic range. 

Yield Point 

Yield point is the point at which the material will have an appreciable 

elongation or yielding without any increase in load. 

Ultimate Strength

The maximum ordinate in the stress-strain diagram is the ultimate strength or 

tensile strength. 

Rupture Strength 
Rupture strength is the strength of the material at rupture. This is also known 

as the breaking strength. 

Modulus Of Resilience

Modulus of resilience is the work done on a unit volume of material as the 

force is gradually increased from O to P, in Nm/m3. This may be calculated as 

the area under the stress-strain curve from the origin O to up to the elastic 

limit E (the shaded area in the figure). The resilience of the material is its 

ability to absorb energy without creating a permanent distortion.  

Modulus Of Toughness

Modulus of toughness is the work done on a unit volume of material as the 

force is gradually increased from O to R, in Nm/m3. This may be calculated 

as the area under the entire stress-strain curve (from O to R). The toughness of 

a material is its ability to absorb energy without causing it to break.  

STIFFNESS, k  
Stiffness is the ratio of the steady force acting on an elastic body to the 

resulting displacement. It has the unit of N/mm.  
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     k = P / δ  

Working Stress, Allowable Stress, And Factor Of Safety 

Working stress is defined as the actual stress of a material under a given 

loading. The maximum safe stress that a material can carry is termed as the 

allowable stress. The allowable stress should be limited to values not 

exceeding the proportional limit. However, since proportional limit is difficult 

to determine accurately, the allowable tress is taken as either the yield point or 

ultimate strength divided by a factor of safety. The ratio of this strength 

(ultimate or yield strength) to allowable strength is called the factor of safety. 

AXIAL DEFORMATION 

In the linear portion of the stress-strain diagram, the tress is proportional to 

strain and is given by:σ = Eε  

since σ = P / A and ε= δ / L, then P / A = E δ / L. Solving for δ, 

To use this formula, the load must be 

axial, the bar must have a uniform cross-

sectional area, and the stress must not exceed 

the proportional limit. If however, the cross-

sectional area is not uniform, the axial 

deformation can be determined by 

considering a differential length and applying 

integration.  

where A = ty and y and t, if variable, must be 
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expressed in terms of x. 

For a rod of unit mass ρ suspended vertically from one end, the total 

elongation due to its own weight is : 

where ρ is in kg/m3, L is the length of the rod in mm, M is the total mass of 

the rod in kg, A is the cross-sectional area of the rod in mm2, and g = 9.81 

m/s2.  

SOLVED EXAMPLES ON STRAIN & AXIAL DEFORMATION 
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Example 201: A uniform bar of length L, cross-sectional area A, and unit 

mass ρ is suspended vertically from one end. Show that its total elongation is 

δ = ρgL
2
 / 2E. If the total mass of the bar is M, show also that δ = MgL/2AE. 
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Solution 201 
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Example 201A :A steel rod having a cross-sectional area of 300 mm
2
 and a 

length of 150 m is suspended vertically from one end. It supports a tensile 

load of 20 kN at the lower end. If the unit mass of steel is 7850 kg/m
3
 and E = 

200 × 103 MN/m2, find the total elongation of the rod.  

Solution 201A 
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Example 202 :A steel wire 30 ft long, hanging vertically, supports a load of 

500 lb. Neglecting the weight of the wire, determine the required diameter if 

the stress is not to exceed 20 ksi and the total elongation is not to exceed 0.20 

in. Assume E = 29 × 10
6
 psi. 

Solution 202 

Example 203 :An aluminum bar having a cross-sectional area of 0.5 in2 

carries the axial loads applied at the positions shown in Fig. P-209. Compute 

the total change in length of the bar if E = 10 × 106 psi. Assume the bar is 

suitably braced to prevent lateral buckling.  
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Solution 203 

Example 204: Axial loads are applied at the positions indicated. Find the 

largest value of P that will not exceed an overall deformation of 3.0 mm, or 

the following stresses: 140 MPa in the steel, 120 MPa in the bronze, and 80 

MPa in the aluminum. Assume that the assembly is suitably braced to prevent 

buckling. Use Est = 200 GPa, Eal = 70 GPa, and Ebr = 83 GPa.  
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Solution 204 

Example 205 :The rigid bar ABC shown in 

Fig. P-212 is hinged at A and supported by a 

steel rod at B. Determine the largest load P 

that can be applied at C if the stress in the 

steel rod is limited to 30 ksi and the vertical 

movement of end C must not exceed 0.10 in.  
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Solution 205 

Example 206 :The rigid bar AB, 

attached to two vertical rods as 

shown in Fig. P-213, is horizontal 

before the load P is applied. 

Determine the vertical movement 

of P if its magnitude is 50 kN. 
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Solution 206 

Example 207:The rigid bars AB and CD 

shown in Fig. P-214 are supported by pins 

at A and C and the two rods. Determine the 

maximum force P that can be applied as 

shown if its vertical movement is limited 

to 5 mm. Neglect the weights of all 

members. 
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Solution 207 
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Poisson's Ratio: 

If a bar is subjected to a tensile loading there will be an increase in length 

of the bar in the direction of the applied load, but there is also a decrease in a 

lateral dimension perpendicular to the load. It has been observed that for an 

elastic materials, the lateral strain is proportional to the longitudinal strain. 

The ratio of the lateral strain to longitudinal strain is known as the Poison's 

ratioand is denoted by ν.   

Poison's ratio (ν ) = - lateral strain / longitudinal strain 

where εx is strain in the x-direction and εy and εz are the strains in the 

perpendicular direction. The negative sign indicates a decrease in the 

transverse dimension when εx is positive.  

For most engineering materials the value of (ν) is between 0.15 and 0.33. 

 For most steel, it lies in the range of 0.25 to 0.3, and 0.20 for concrete. 
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BIAXIAL DEFORMATION: 

If an element is subjected simultaneously by Tensile stresses, σx and σy, in the 

x and y directions, the strain in the x-direction is σx / E and the strain in the y 

direction is σy / E. Simultaneously, the stress in the y direction will produce a 

lateral contraction on the x-x direction of the amount (-ν εy or -ν σy/E ). The 

resulting strain in the x direction will be : 

TRIAXIAL DEFORMATION 

If an element is subjected simultaneously by three mutually perpendicular 

normal stresses σx, σy, and σz, which are accompanied by strains εx, εy, and εz, 

respectively,  
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Tensile stresses and elongation are taken as positive. Compressive stresses 

and contraction are taken as negative.  

Shear  Deformation and Shear Strain 

Shearing forces cause shearing deformation. An element subject to shear 

does not change in length but undergoes a change in shape.  

The change in angle at the corner of an original rectangular element is 

called the Shear Strain  and is expressed as: 

The ratio of the shear stress τ and the shear strain γ is called the modulus of 

elasticity in shear or modulus of rigidity and is denoted as G, in MPa.  

The relationship between the shearing deformation and the applied shearing 

force is : 
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where V is the shearing force acting over an area As. 

Relationship Between E, G, and ν 

The relationship between modulus of elasticity E, shear modulus G and 

Poisson's ratio ν is  given as : 

     G =

Bulk Modulus of Elasticity or Modulus of Volume Expansion, K 

The bulk modulus of elasticity K is a measure of a resistance of a material 

to change in volume without change in shape or form. It is given as : 

where V is the volume and ΔV is change in volume. The ratio ΔV / V is 

called Volumetric Strain and can be expressed as: 
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Solved Problems in Poison's ratio 

Problem 222: A solid cylinder of diameter d carries an axial load P. Show 

that its change in diameter is 4Pν / πEd.  

Solution 222 

Problem 223:  A rectangular steel block is 3 inches long in the x direction, 2 

inches long in the y direction, and 4 inches long in the z direction. The block 

is subjected to a triaxial loading of three uniformly distributed forces as 

follows: 48 kips tension in the x direction, 60 kips compression in the y 
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direction, and 54 kips tension in the z direction. If ν = 0.30 and E = 29 × 10
6
 

psi, determine the single uniformly distributed load in the x direction that 

would produce the same deformation in the y direction as the original loading. 

Solution 223 
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Problem 224 : For the block loaded triaxially as described in Prob. 223, find 

the uniformly distributed load that must be added in the x-direction to produce 

no deformation in the z-direction.  

Solution 224 
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Problem 225 : A welded steel cylindrical drum made of a 10-mm plate has an internal 

diameter of 1.20 m. Compute the change in diameter that would be caused by an internal 

pressure of 1.5 MPa. Assume that Poisson's ratio is 0.30 and E = 200 GPa. 

Solution 225 
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Problem 226 : A 2-in.-diameter steel tube with a wall thickness of 0.05 inch just fits in a 

rigid hole. Find the tangential stress if an axial compressive load of 3140 lb is applied. 

Assume ν = 0.30 and neglect the possibility of buckling.  

Solution 226 

Problem 227 : A 150-mm-long bronze tube, closed at its ends, is 80 mm in diameter and 

has a wall thickness of 3 mm. It fits without clearance in an 80-mm hole in a rigid block. 

The tube is then subjected to an internal pressure of 4.00 MPa. Assuming ν = 1/3 and E = 

83 GPa, determine the tangential stress in the tube.  

Solution 227 
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CHAPTER 3 

Statically Indeterminate Members 

There are many problems, however, in which the internal forces can not be determined 

from statics alone. In fact, in most of these problems the reactions them selves—which are 

external forces—can not be determined by simply drawing a free-body diagram of the 

member and writing the corresponding equilibrium equations. The equilibrium equations 

must be complemented by relations involving deformations obtained by considering the 

geometry of the problem. 

Because statics is not sufficient to determine either the reactions or the internal forces, 

problems of this type are said to be statically indeterminate. The following examples will 

show how to handle this type of problems. 

Solved Problems in Statically Indeterminate Members: 

Problem 201A: Steel bar 50 mm in diameter and 2 m long is surrounded by a shell of a cast 

iron 5 mm thick. Compute the load that will compress the combined bar a total of 0.8 mm in 

the length of 2 m. For steel, E = 200 GPa, and for cast iron, E = 100GPa. 

Solution: 
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Problem 202A: Reinforced concrete column 200 mm in diameter is designed to carry an 

axial compressive load of 300 kN. Determine the required area of the reinforcing steel if 

the allowable stresses are 6 MPa and 120 MPa for the concrete and steel, respectively. Use 

Eco = 14 GPa and Est = 200 GPa.  

Solution 234 
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Problem 203: A rod of length L, cross-sectional area A1, and modulus of elasticity E1, has 

been placed inside a tube of the same length L, but of cross-sectional area A2 and modulus 

of elasticity E2. What is the deformation of the rod and tube when a force P is exerted on a 

rigid end plate as shown? 

Solution:  

Denoting by P1 and P2, respectively, the axial forces in 

the rod and in the tube, we draw free-body diagrams of 

all three elements. Only the last of the diagrams yields 

any significant information, namely: 

P1+P2=P   ------(1) 

Clearly, one equation is not sufficient to determine the 

two unknown internal forces P1 and P2. The problem is 

statically indeterminate. 

However, the geometry of the problem shows that the 

deformations 

 1 and  2 of the rod and tube must be equal. We can write : 

 and          ----------(2) 

Equating the deformations  1 and  2, we obtain 

      -------------- (3) 

Equations (1) and (3) can be solved simultaneously for P1 and P2: 

Either of Eqs. (2) can then be used to determine the common deformation of the rod and 
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Superposition Method. We observe that a structure is statically indeterminate when ever it 

is held by more supports than are required to maintain its equilibrium. This results in more 

unknown reactions than available equilibrium equations. It is often found convenient to 

designate one of the reactions as redundant and to eliminate the corresponding support. 

Since the stated conditions of the problem cannot be arbitrarily changed, the redundant 

reaction must be maintained in the solution. But it will be treated as an unknown load that, 

together with the other loads, must produce deformations that are compatible with the 

original constraints. The actual solution of the problem is carried out by considering 

separately the deformations caused by the given loads and by the redundant reaction, and 

by adding—or superposing—the results obtained. 

Problem 204: Determine the reactions at A and B for the steel bar and loading shown in 

Fig. 2.24, assuming a close fit at both supports before the loads are applied. 

Solution: 

We consider the reaction at B as redundant and release the bar from that support. The 

reaction RB is now considered as an unknown load (a) and will be determined from the 

condition that the deformation d of the rod must be equal to zero. The solution is carried 

out by considering separately the deformation  L caused by the given loads (b) and the 
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deformation  R due to the redundant reaction RB(c). 

Fig. 2.26 

Fig. 2.27 
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Problem 205: A rigid block of mass M is supported by three symmetrically spaced rods as 

shown in Figure. Each copper rod has an area of 900 mm
2
; E = 120 GPa; and the allowable

stress is 70 MPa. The steel rod has an area of 1200 mm
2
; E = 200 GPa; and the allowable

stress is 140 MPa. Determine the largest mass M which can be supported.  

H.W

In Prob. 205, How should the lengths of the two identical copper rods be changed so 

that each material will be stressed to its allowable limit?  
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CHAPTER 4 

Thermal Stresses 

Temperature changes cause the body to expand or contract. The amount δT, is 

given by : 

where (α) is the coefficient of thermal expansion in m/m°C, L is the length in 

meter, and (Ti and Tf) are the initial and final temperatures, respectively in °C.  

For steel, α = 11.25 × 10
–6

 / C
°
.  

stress will be induced in the structure. In some cases where temperature 

deformation is not permitted, an internal stress is created. The internal stress 

created is termed as thermal stress.  

For a homogeneous rod mounted between unyielding supports as shown, the 

thermal stress is computed as:  

deformation due to temperature changes; 

deformation due to equivalent axial stress; 
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where (σ) is the thermal stress in MPa and E is the modulus of elasticity of the 

rod in MPa.  

If the wall yields a distance of (x) as shown, the following calculations will be 

made:  

where (σ) represents the thermal stress. 

Take note that as the temperature rises above the normal, the rod will be in 

compression, and if the temperature drops below the normal, the rod is in 

tension.  
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Solved Problems in Thermal Stress 

Problem 261: A steel rod with a cross-sectional area of 0.25 in
2
 is stretched 

between two fixed points. The tensile load at 70°F is 1200 lb. What will be the 

stress at 0°F? At what temperature will the stress be zero? Assume α = 6.5 × 

10
-6

 in / (in·°F) and E = 29 × 10
6
 psi.  

Solution 261 
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Problem 262: A steel rod is stretched between two rigid walls and carries a tensile load of 

5000 N at 20°C. If the allowable stress is not to exceed 130 MPa at -20°C, what is the 

minimum diameter of the rod? Assume α = 11.7 μm/(m·°C) and E = 200 GPa. 

Solution 262 

Problem 263: Steel railroad reels 10 m long are laid with a clearance of 3 mm at a 

temperature of 15°C. At what temperature will the rails just touch? What stress would be 

induced in the rails at that temperature if there were no initial clearance? Assume α = 11.7 

μm/(m·°C) and E = 200 GPa.  

Solution 263 
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Problem 264: A steel rod 3 feet long with a cross-sectional area of 0.25 in.
2
 is stretched

between two fixed points. The tensile force is 1200 lb at 40°F. Using E = 29 × 10
6
 psi and α

= 6.5 × 10
-6

 in./(in.·°F), calculate (a) the temperature at which the stress in the bar will be 10

ksi; and (b) the temperature at which the stress will be zero.  
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CHAPTER 5 
BEAMS 

Introduction : 

• Beams - structural members supporting
loads at various points along the
member.

• Transverse loadings of beams are
classified as concentrated loads or
distributed loads.

• Applied loads result in internal forces
consisting of a shear force (from the
shear stress distribution) and a bending
couple (from the normal stress
distribution).

Classification of Beams: 

1- Statically Determinate Beams:

Statically determinate beams are those beams in which the reactions of the

supports may be determined by the use of the equations of static equilibrium. 

The beams shown below are examples of statically determinate beams.  
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2- Statically Indeterminate Beams:

If the number of reactions exerted upon a beam exceeds the number of

equations in static equilibrium, the beam is said to be statically indeterminate. 

In order to solve the reactions of the beam, the static equations must be 

supplemented by equations based upon the elastic deformations of the beam.  

The degree of indeterminacy is taken as the difference between the 

number of reactions to the number of equations in static equilibrium that can be 

applied. In the case of the propped beam shown, there are three reactions (R1, 

R2, and M) while only two equations (ΣM = 0 and ΣFv = 0) can be applied, thus 

the beam is indeterminate to the first degree (3 – 2 = 1).  

TYPES OF LOADING 

Loads applied to the beam may consist of a concentrated load (load applied at 

a point), uniform load, uniformly varying load, or an applied couple or 

moment. These loads are shown in the following figures.  
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Shear Force and Bending Moment Diagrams 

Shear Force and Bending Moment Diagrams 

are plots of the shear forces and bending 

moments, respectively, along the length of a 

beam. The purpose of these plots is to clearly 

show maximum of the shear force and bending 

moment, which are important in the design of 

beams. 

 The most common sign convention for the 

shear force and bending moment in beams is 

shown in Fig. 9.12.  
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One method of determining the shear and moment diagrams is by the 

following steps: 

1. Determine the reactions from equilibrium of the entire beam.

2. Cut the beam at an arbitrary point.

3. Show the unknown shear and moment on the cut using the positive sign

convention shown in Fig. 9.12. 

4. Sum forces in the vertical direction to determine the unknown shear.

5. Sum moments about the cut to determine the unknown moment.

Example (1) 

For the beam shown, derive equations for shear force and bending moment at 

any point along the beam. 
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Solution: 

We cut the beam at a point between  A and B 

at distance x from A and draw thefree-body 

diagram of the left part of the beam, directing 

V and M as indicated in the figure.  

Σ Fy = 0 :    Σ Mx = 0 : 

 P + V = 0  P.x  + M = 0

 V = -P    (   )                 M = - Px(   ) 

 Note that shear force is constant (equal P) along the beam, and bending

moment is a linear function of  ( x ).

Example (2): 

For a cantilever beam AB of span L 

supporting a uniformly distributed 

load w, derive equations for shear 

force and bending moment at any 

point along the beam. 
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Solution: 

We cut the beam at a point C between A and B and 

draw free-body diagram of AC, directing V and M as 

indicated in Fig. Denoting by x the distance from  A 

to C and replacing the distributed load over AC by its 

resultant (wx) applied at the mid point of AC, we 

write: 

Σ Fy = 0 :    Σ Mx = 0 : 

-wx -V =0

V =-wx 

Example (3): 

For the simply supported beam AB of span 

L supporting a single concentrated load P, 

derive equations for shear force and 

bending moment at any point along the 

beam. 
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Solution: 

We first determine the reactions at the supports 

from the free-body diagram of the entire beam; we 

find that the magnitude of each reaction is equal to 

P/2. Next we cut the beam at a point D between A 

and C and draw the free-body diagrams of AD and 

DB. Assuming that shear and bending moment are 

positive, we direct the internal forces V and V’ and 

the internal couples M and M’ as indicated in Fig. 

Considering the free body AD and writing that the 

sum of the vertical components and the sum of the 

moments about D of the forces acting on the free 

body are zero, we find: 

V =+P/2  and  M =+Px/2.  

Both the shear and bending moment are therefore 

positive; this may be checked by observing that the 

reaction at A tends to shear off and to bend the beam 

at D as indicated in Figs. b and c. The shear has a 

constant value V =P/2, while the bending moment 

increases linearly from M = 0 at x = 0 to M =PL/4 at 

x =L/2. 

Cutting, now, the beam at a point E between C and B and considering the free body EB 

(Fig. c), we write that the sum of the vertical components and the sum of the moments 

about E of the forces acting on the free body are zero. We obtain: 

V = - P/2 and M =P(L -x)/2. 
 The shear is therefore negative and the bending moment positive; this can be checked by 

observing that the reaction at B bends the beam at E as indicated in Fig. c but tends to shear 

it off in a manner opposite to that shown in Fig. b.  

Note that the shear has a constant value V = -P/2 between C and B, while the bending 

moment decreases linearly from M = PL/4 at x = L/2 to M = 0 at x = L. 
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Shear Force and Moment Diagram 

The determination of the maximum absolute values 

of the shear and of the bending moment in a beam are 

greatly facilitated if V and M are plotted against the 

distance x measured from one end of the beam. 

Besides, as you will see later, the knowledge of M as a 

function of x is essential to the determination of the 

deflection of a beam. 

In the examples and sample problems of this section, 

the shear and bending-moment diagrams will be 

obtained by determining the values of V and M at 

selected points of the beam. These values will be found 

in the usual way, i.e., by passing a section through the 

point where they are to be determined (Fig. a) and 

considering the equilibrium of the portion of beam 

located on either side of the section (Fig. b). Since the 

shear forces V and V have opposite senses, recording 

the shear at point C with an up or down arrow would be 

meaning less, unless we indicated at the same time 

which of the free bodies AC and CB we are 

considering. 

For this reason, the shear V will be recorded with a sign: a plus 

sign if the shearing forces are directed as shown in Fig.a, and a 

minus sign otherwise. A similar convention will apply for the 

bending moment M. It will be considered as positive if the 

bending couples are directed as shown in that figure, and negative 

otherwise. Summarizing the sign conventions we have presented, 

we state: 

The shear V and the bending moment M at a given point of 

abeam are said to be positive when the internal forces and 

couples actingon each portion of the beam are directed as shown 

in Fig. a. 
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Example (4): For the beam shown, plot the shear and moment diagram. 

Solution: 

First, solve for the unknown reactions using 

the free-body diagram of the beam shown in Fig, 

(a). to find the reactions, sum moments about the 

left end which gives: 

6R2 − (3)(2) = 0 or R2 = 6/6 = 1 kN 

Sum forces in the vertical direction to get: 

R1 + R2 = 3 = R1 + 1 or R1 = 2 kN 

Cut the beam between the left end and the load as 

shown in (b). Show the unknown moment and 

shear on the cut using the positive sign 

convention. Sum the vertical forces to get: 

V = 2 kN (independent of x) 

Sum moments about the cut to get: 

M = R1x = 2x 

Repeat the procedure by making a cut between 

the right end of the beam and the 3-kN load, as 

shown in (c). Again, sum vertical forces and sum 

moments about the cut to get: 

V = 1 kN (independent of x ), and M = 1x 

The plots of these expressions for shear and 

moment give the shear and moment diagrams (as 

shown in Fig.(d) and (e). 
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Example(5) The simply supported 

uniform beam shown in Exhibit 16 

carries a uniform load of w0 . Plot the 

shear and moment diagrams for this 

beam. 
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It can be seen that the shear diagram is a straight line, and the moment 

varies parabolically with x. Shear and moment diagrams are shown in 

Exhibit 17(b) and Exhibit 17(c). It can be seen that the maximum bending 

moment occurs at the center of the beam where the shear stress is zero. The 

maximum bending moment always has a relative maximum at the place 

where the shear is zero because the shear is the derivative of the moment, 

and relative maxima occur when the derivative is zero. 

Solved problems 

Solution: 
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CHAPTER 6 
STRESSES IN BEAMS

Forces and couples acting on the beam cause bending (flexural stresses) and 

shearing stresses on any cross section of the beam and deflection 

perpendicular to the longitudinal axis of the beam. If couples are applied to 

the ends of the beam and no forces act on it, the bending is said to be pure 

bending. If forces produce the bending, the bending is called ordinary 

bending.  

Flexure Formula: 

Assumptions  

1) A plane section of the beam normal to its longitudinal axis prior to loading remains

plane after the forces and couples have been applied.

2) The beam is initially straight and of uniform cross section.

3) The moduli of elasticity in tension and compression are equal.

4) The stresses and strains are small (within elastic range), material is homogeneous

and Hooks law is applied.

Deformations In A Symmetric Member in Pure Bending 

Fig.1 Member in pure bending. 

Fig. 2 Beam in which portion CD is in pure bending.
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Fig.3 Deformation of member in 

pure bending.

Fig. 4 Deformation with Respect to Neutral Axis
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Denoting by ρ the radius of arc DE (Fig. 4-a), by Ɵ the central angle corresponding to 

DE, and observing that the length of DE is equal to the length L of the unreformed member, 

we write : 

----------------------(1)    

The arc JK located at a distance y above the neutral surface, we note that its length is : 

--------------------------(2) 

Since the original length of arc JK was equal to L, the deformation 

of JK is: 

----------------------------(3) 

or, if we substitute from (1) and (2) into (3),  : 

------------(4) 

The longitudinal strain  ϵx  in the elements of JK is obtained by dividing

 by the original length L of JK. We write: 

Or                      -------------(5)

Because of the requirement that transverse sections remain plane, identical deformations 

will occur in all planes parallel to the plane of symmetry. Thus the value of the strain given 

by Eq. (5) is valid anywhere, and we conclude that the longitudinal normal strainx varies 

linearly with the distance y from the neutral surface. 

The strain x reaches its maximum absolute value when y itself is largest. Denoting by c the 

largest distance from the neutral surface (which corresponds to either the upper or the lower 

surface of the member), and by m the maximum absolute value of the strain, we have: 
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                  -----------------  (6)

Solving (6) for ρ and substituting the value obtained into (5), we can also write: 

------------------(7) 

Stresses And Deformations In The Elastic Range 

We now consider the case when the bending moment M is such that the normal stresses 

in the member remain below the yield strength σy. This means that, for all practical 

purposes, the stresses in the member will remain below the proportional limit and the 

elastic limit as well. There will be no permanent deformation, and Hooke’s law for uniaxial 

stress applies. Assuming the material to be homogeneous, and denoting by E its modulus of 

elasticity, we have in the longitudinal x direction:  

-----------------(8) 

Recalling Eq. (7), and multiplying both members of that equation by E, we write: 

      Or 

----------------(9) 
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Fig. 5 Bending stresses.

where σm denotes the maximum absolute value of the stress.

This result shows that, in the elastic range, the normal stress 

varies linearly with the distance from the neutral surface 

(Fig.5). 

It should be noted that, at this point, we do not know the 

location of the neutral surface, nor the maximum value σm of 

the stress. Both can be found if we recall the equations of 

equilibrium which were obtained earlier from statics.  

Substituting first for σm from (5) into  

∑ Fx = 0 ,  

we write : 

from which it follows that: 

------------------(10) 

This equation shows that the first moment of the cross section about its neutral axis 

must be zero. In other words, for a member subjected to pure bending, and as long as the 

stresses remain in the elastic range, the neutral axis passes through the centroid of the 

section. 

We now recall the 3
rd

. Eq. of equilibrium, with respect to an arbitrary horizontal

z - axis, 

∑ Mz = 0    ,    

Specifying that the z - axis should coincide with the neutral axis of the cross section, we 

substitute for σx from (9) and write : 
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But 

I      

( where  I  is the second moment, of the cross section with respect to a centroidal axis 

perpendicular to the plane of the couple M ), then we can write : 

          --------------- (11)

And , 

-------------- (12) 

Equations (11) and (12) are called the elastic flexure formulas, and the normal stress σx 

caused by the bending or “flexing” of the member is often referred to as the flexural stress. 

We verify that the stress is compressive (σx > 0) above the neutral axis (y > 0) when the 

bending moment M is positive, and tensile (σx < 0) when M is negative. 

Note:: from now, in this chapter the notation ( fb will be used instead of σx 

to denote the flexural stress. 

Now we can write: 

fb =  and   ( fb)max =  
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SECTION MODULUS 

In the formula, ( fb)max =  

the ratio I/c is called the Section Modulus and is usually denoted by S with units of mm
3
 or

(in
3
). The maximum bending stress may then be written as :

 ( fb)max =  

This form is convenient because the values of S are available in handbooks for a wide 

range of standard structural shapes.  

The deformation of the member caused by the bending moment M is measured by the 

curvature of the neutral surface. The curvature (k) is defined as the reciprocal of the radius 

of curvature ρ, and can be obtained by from :  

Then , 

---------------- (13) 
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SOLVED PROBLEMS IN FLEXURE FORMULA 

Problem 503 A: cantilever beam, 50 mm wide by 150 mm high and 6 m long, carries a 

load that varies uniformly from zero at the free end to 1000 N/m at the wall. (a) Compute 

the magnitude and location of the maximum flexural stress. (b) Determine the type and 

magnitude of the stress in a fiber 20 mm from the top of the beam at a section 2 m from the 

free end.  
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Shearing Stresses in Beams 

All the theory which has been discussed earlier, while we discussed the bending stresses in 

beams was for the case of pure bending i.e. constant bending moment acts along the entire 

length of the beam.  

Let us consider the beam AB transversely 

loaded as shown in the figure above. 

Together with shear force and bending 

moment diagrams we note that the middle 

potion CD of the beam is free from shear 

force and that its bending moment. M = P.a 

is uniform between the portion C and D. This 

condition is called the pure bending 

condition. 

Since shear force and bending moment 

are related to each other F= dM/dX (eq) 

therefore if the shear force changes than 

there will be a change in the bending 

moment also, and then this won't be the pure 

bending.  

Conclusions: Hence one can conclude 

from the pure bending theory was that the 

shear force at each X-section is zero and the 

normal stresses due to bending are the only 

ones produced. 

Let us study the shear stresses in the beams. 

Concept of Shear Stresses in Beams : 
By the earlier discussion we have seen that the bending moment represents the 

resultant of certain linear distribution of normal stresses  x over the cross-section. 

Similarly, the shear force Fx over any cross-section must be the resultant of a certain 

distribution of shear stresses. 

Derivation of equation for shearing stress : 



STREMGTH OF MATERIALS

  12الصفحة

Assumptions : 
1. Stress is uniform across the width (i.e. parallel to the neutral axis)

2. The presence of the shear stress does not affect the distribution of normal bending

stresses.

It may be noted that the assumption no.2 cannot be rigidly true as the existence of shear 

stress will cause a distortion of transverse planes, which will no longer remain plane. 

In the above figure let us consider the two transverse sections which are at a distance ‘ dx' 

apart. The shearing forces and bending moments being F, F + dF and M, M + dM 

respectively. Now due to the shear stress on transverse planes there will be a 

complementary shear stress on longitudinal planes parallel to the neutral axis.  

Let τ be the value of the complementary shear stress (and hence the transverse shear stress) 

at a distance yo from the neutral axis. Z is the width of the x-section at this position  

A is area of cross-section cut-off by a line parallel to the neutral axis. 

= distance of the centroid of area from the neutral axis. 

Let   ,  + d  are the normal stresses on an element of area dA at the two transverse 

sections, then there is a difference of longitudinal forces equal to ( d  . dA) , and this 

quantity summed over the area A is in equilibrium with the transverse shear stress τ on the 

longitudinal plane of area zdx .  
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The figure shown below 

indicates the pictorial 

representation of the part. 

Where ‘z' is the actual width of the section at the position where ‘ τ ' is being calculated and 

I is the total moment of inertia about the neutral axis.  
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Shearing stress distribution in typical cross-sections: 

Let us consider few examples to determine the sheer stress distribution in a given X- 

sections. 

Rectangular x-section:  

Consider a rectangular x-section of dimension b and d . 

A is the area of the x-section cut off by a line parallel to the neutral axis.  is the 

distance of the centroid of A from the neutral axis. 

This shows that there is a parabolic distribution of shear stress with y.  

The maximum value of shear stress would obviously beat the location y = 0. 
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Therefore the shear stress distribution is shown as below.  

It may be noted that the shear stress is distributed parabolically over a rectangular cross-

section, it is maximum at y = 0 and is zero at the extreme ends.  

I –section :   Consider an I - section of the dimension shown below. 
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The shear stress distribution for any arbitrary shape is given as 

Let us evaluate the quantity         , the quantity for this case comprise the 

contribution due to flange area and web area. 

Flange area 

Web Area 



STREMGTH OF MATERIALS

  17الصفحة

To get the maximum and minimum values of t substitute in the above relation.  

y = 0 at N. A. And y = d/2 at the tip.  

The maximum shear stress is at the neutral axis. i.e. for the condition y = 0 at N. A. 

.......(2) 

Hence,       

The minimum stress occur at the top of the web, the term bd 2 goes off and shear stress is 

given by the following expression : 

   ............(3) 

The distribution of shear stress may be drawn as below, which clearly indicates a parabolic 

distribution: 

Note: from the above distribution we can see that the shear stress at the flanges is not zero, 

but it has some value, this can be analyzed from equation (1). At the flange tip or flange or 

web interface y = d/2. Obviously then this will have some constant value and then onwards 

this will have parabolic distribution.  
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In practice it is usually found that most of shearing stress usually about 95% is carried by 

the web, and hence the shear stress in the flange is negligible however if we have the 

concrete analysis i.e. if we analyze the shearing stress in the flange i.e. writing down the 

expression for shear stress for flange and web separately, we will have this type of 

variation: 

This distribution is 

known as the “top – hat” 

distribution. Clearly the 

web bears the most of the 

shear stress and bending 

theory we can say that 

the flange will bear most 

of the bending stress.  

Shear stress distribution in beams of circular cross-section: 

Let us find the shear stress distribution in beams of circular cross-section. In a beam of 

circular cross-section, the value of Z width depends on y.  
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Using the expression for the determination of shear stresses for any arbitrary shape or a 

arbitrary section.  

Where òy dA is the area moment of the shaded portion or the first moment of area. 

Here in this case ‘dA' is to be found out using the Pythagoras theorem: 
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The distribution of shear stresses is shown below, which indicates a parabolic distribution: 

Quiz No. 4 :  
For the beam and loading shown : 

Draw the shear and bending-moment diagrams and determine the maximum 

value of (w) which can be applied such that the normal bending stress will not 

exceed ( 120 MPa). 

For the section S250x52  use :  I = 61.2 x 10
6 
 mm

4  
 ,  S = 486 x 10

3 
mm

3
 

W (kN/m)
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Unsymmetrical Beams 

Flexural Stress varies directly linearly with distance from the neutral axis. Thus for a 

symmetrical section such as wide flange, the compressive and tensile stresses will be the 

same. This will be desirable if the material is both equally strong in tension and 

compression. However, there are materials, such as cast iron, which are strong in 

compression than in tension. It is therefore desirable to use a beam with unsymmetrical 

cross section giving more area in the compression part making the stronger fiber located at 

a greater distance from the neutral axis than the weaker fiber. Some of these sections are 

shown below.  

The proportioning of these sections is such that the ratio of the distance of the neutral 

axis from the outermost fibers in tension and in compression is the same as the ratio of the 

allowable stresses in tension and in compression. Thus, the allowable stresses are reached 

simultaneously.  

In this section, the following notation will be use: 

fbt = flexure stress of fiber in tension. 

fbc = flexure stress of fiber in compression. 

N.A. = neutral axis. 

yt = distance of fiber in tension from N.A. 

yc = distance of fiber in compression from N.A. 

Mr = resisting moment. 

Mc = resisting moment in compression. 

Mt = resisting moment in tension.  
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Solved Problems in Unsymmetrical Beams 

Example (1) 

The inverted T- section of a 4-m simply supported beam has the properties shown in Fig. 

The beam carries a uniformly distributed load of intensity wo over its entire length. 

Determine wo if fbt ≤ 40 MPa and fbc ≤ 80 MPa.  

Solution: 
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Example (2) 
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Example (3) 
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Example (4) 
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CHAPTER 7 

Deflection of Beams 

(I) Method of Double Integration

Differential Equations of the Deflection Curve (Elastic Curve): 

The problem of bending probably occurs 

more often than any other loading problem in 

design. Shafts, axles, cranks, levers, springs, 

brackets, and wheels, as well as many other 

elements, must often be treated as beams in the 

design and analysis of mechanical structures and 

system.  

A beam subjected to pure bending is bent into 

an arc of circle within the elastic range, and the 

relation for the curvature is: 

EI

xM )(1



  (1) 

Where:       is the radius of the curvature of the neutral axis? 

        x  is the distance of the section from the left end of the beam. 

The curvature of a plane curve is given by the equation:  
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 is the slope of the curve and in the case of elastic curve the slope is very 

small:     
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   (3) 

Multiply both sides by EI which is constant and integrating with respect to x: 

 EI 








dx

dy
 =   ∫ M(x) dx + C1  (4)  

Noting that 








dx

dy
 = tan(θ )  = θ(x)    because the angle θ is very small. 

Then Eq. (4) can be written as: 
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 And integrating the equation again: 

   EI y = ∫ [ ∫ M(x)dx + C1] dx + C2       (5) 

EI y = ∫ [ ∫ M(x)dx] dx + C1 x + C2 

The constants C1 and C2 are determined from the boundary conditions 

(constants) imposed on the beam by its supports. 

The figure shows different boundary 

conditions applied for the three typical 

types of statically determinate beams:  

(a) the simply supported beam, (b) the

overhanging beam, and (c) the cantilever

beam.

In the first two cases, the supports 

consist of a pin and bracket at A and of a 

roller at B, and require that the deflection 

be zero at each of these points. Letting first 

x = xA,  y = yA = 0 in Eq. (5), and then 

x = xB, y = yB = 0 in the same equation, we 

obtain two equations that can be solved for 

C1 and C2.  

In the case of the cantilever beam, we 

note that both the deflection and the slope 

at A must be zero. Letting x = xA,  y = yA = 0 

in Eq. (5), and x = xA, θ = θA = 0 in Eq. (4), 

we obtain again two equations that can be 
solved for C1 and C2. 
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In each of the two examples considered so far, only one free body diagram was 

required to determine the bending moment in the beam. As a result, a single function of x 

was used to represent M throughout the beam. This, however, is not generally the case. 

Concentrated loads, reactions at supports, or discontinuities in a distributed load will make 

it necessary to divide the beam into several portions, and to represent the bending moment 

by a different function M(x) in each of these portions of beam. Each of the functions M(x) 

will then lead to a different expression for the slope θ(x) and for the deflection y(x). Since 

each of the expressions obtained for the deflection must contain two constants of 

integration, a large number of constants will have to be determined. 

As you will see in the next example, the required additional boundary conditions can 

be obtained by observing that, while the shear and bending moment can be discontinuous at 

several points in a beam, the deflection and the slope of the beam cannot be discontinuous 

at any point. 
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USING SINGULARITY FUNCTIONS TO DETERMINE 

THE SLOPE AND DEFLECTION OF A BEAM 

Let us consider again the beam and loading of 

Example 9.03 (Fig. 9.16) and draw the free-body 

diagram of that beam (Fig. 9.27). Using the 

appropriate singularity function, to represent the 

contribution to the shear of the concentrated load 

P, we write: 

Integrating in x and recalling that in the absence 

of any concentrated couple, the expression 

obtained for the bending moment will not contain 

any constant term, we have: 

and, integrating in x, 

The constants C1 and C2 can be determined from 

the boundary conditions shown in Fig. 9.28. 

Letting x = 0, y = 0 in Eq. of  y above , we have: 
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which reduces to C2 = 0, since any bracket containing a negative quantity is equal to zero. 

Letting now x = L, y = 0, and C2 = 0 in the same equation of  y above,  we write: 

Since the quantity between brackets is positive, the brackets can be replaced by ordinary 

parentheses. Solving for C1, we have:
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