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CHAPTER ONE 

 INTRODUCTION: PROPERTIES OF CONCRETE AND STEEL 

1.1 Concrete,  Reinforced Concrete and Prestressed Concrete 

The materials used in most of the structures are, wood, steel, reinforced 

concrete, precast concrete, and prestressed concrete. Other lightweight materials 

like aluminum and polymers are used lately. The material that is most widely 

used in civil engineering structures is reinforced concrete due to its properties as 

compared with other materials like relatively low cost, moldability, durability, 

and rigidity.  

Reinforced concrete is a composite material composed of concrete that has large 

compressive strength but small tensile strength, and embedded reinforcing bars 

in concrete which provide the required tensile strength of the member. The 

reason that make concrete and steel working effectively are: 

i- Bond or the interaction between the reinforcing bars and the surrounding 

concrete, that prevent slipping or sliding of the two materials relative to 

each other.  

ii- The concrete mixtures after its hardening, has low permeability that 

prevents rusting of the reinforcing bars. 

iii- The coefficient of thermal expansion of concrete is (10-13×10-6/C°) and 

(12×10-6/C°) for steel make the difference between the stresses created 

due to temperature variation small and can be neglected.  

For these reasons, reinforced concrete is suitable for use in ordinary buildings, 

bridges, tanks, retaining walls, tunnels, conduits, and other structures. 

 

1.2 CONCRETE AND REINFORCED CONCRETE 

 Ordinary concrete is usually made from certain proportions of cement, fine 

aggregates, coarse aggregates, water and sometimes mineral or chemical 

admixtures that provide the fresh or hardened concrete with certain properties. 

After hardening in the forms around the reinforcing bars, it is called reinforced 

concrete. It is possible to get concrete with different strengths by changing the 

proportions of the four constituent materials, using certain types of cement, or 

using certain curing process. The factors that make concrete widely used as a 

construction material are: 

i- Its moldability when it is fresh,  

ii- Relative resistance to fire, 

iii- Resistance to environmental conditions, and 

iv- Availability and cheapness of the constituent materials except cement. 
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 The compression strength of concrete is relatively high as in natural rocks 

which make it suitable for use in members subjected to compression forces like 

columns and arches. On the other hand, concrete is a brittle material and has low 

tensile strength (8-20% of its compression strength) like natural rocks. This will 

limit its use in structural members subjected completely to tension like ties, or 

partially as in slabs and beams. To compensate this, steel reinforcement that has 

high tensile strength compared to concrete can be used to in places subjected to 

tensile stresses. The steel reinforcement is usually bars with circular section and 

lugs or protrusions on the external surface to increase the bond between the bars 

and concrete.    

1.2.1 CEMENT  

The bonding material used to manufacture concrete is called hydraulic cement 

because it requires water to react with and harden. The materials used to 

manufacture cement are, limestone and clay. There are many types of cement as 

shown in Table (1) below. 

1.2.2 AGGREGATES 

The aggregates occupy about 70-80% of the total volume of concrete, and for 

this reason it has a great effect on the properties of fresh and hardened concrete. 

Therefore, the aggregates must have a good strength, durability, and resistance 

to the environmental conditions. Its external surface should be free from silt, 

loam, and organic matters that may weaken the bond with the cement paste. It 

should be ascertained that the aggregates are not reactive which react with the 

cement and cause expansion of concrete and consequently disintegration.    

Aggregates is classified as fine (sand with size ≤ 5.0 mm) and coarse with size > 

5.0 mm like gravel or any other crushed stones. Maximum aggregate size is 

limited by ACI Code (26.4.2) to: 

i- One fifth of the least distance of the lateral forms (columns, walls, and 

beams web), 

ii- One third the slab depth, and 

iii- Three quarter the clear spacing between bars. 

Concrete made with gravel or crushed stones result in a density of 23 kN/m3, 

and when reinforced with steel gives a density of ≈ 24 kN/m3.  

There is also lightweight concrete which is made from natural or manufactured 

lightweight aggregates that result in densities ranging from 8 to 19 kN/m3. 
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Table (1) Types of Cements 

Designation Cement type Uses 

Type I Normal   Pavements, floors, reinforced concrete buildings, bridges, 

tanks, reservoirs, pipe, masonry units, and precast concrete 

products. 

Type IA Normal, air-

entraining  

As Type I and produce concrete with improved resistance to 

freezing and thawing 

Type II Moderate 

sulfate 

resistance 

Protection against moderate sulfate attack is necessary 

Type IIA Moderate 

sulfate 

resistance, air 

entraining 

As Type II, improved resistance to freezing and thawing 

Type II 

(MH) 

Moderate heat 

of hydration and 

moderate sulfate 

resistance 

Large piers, large foundations, and thick retaining walls 

Type II 

(MH)A 

Moderate heat 

of hydration,  

moderate sulfate 

resistance, air 

entraining 

As Type II (MH) and produce concrete with improved 

resistance to freezing and thawing 

Type III High early 

strength 

Structure must be put into service quickly. In cold weather, 

reduction in the length of the curing period 

Type IIIA High early 

strength, air-

entraining 

As Type III, improved resistance to freezing and thawing 

Type IV Low heat of 

hydration 

Massive concrete structures, such as large gravity dams 

Type V High sulfate 

resistance 

Concrete exposed to severe sulfate environments – 

principally where soils or ground waters have a high sulfate 

content 

 

1.2.3 WATER 

Water is one the important constituent of concrete, without it the hydration and 

hardening processes will not occur. Mixing and curing water should be clean, 

free from acids, alkalis, salts, organic matter, or any other material that may 

affect concrete or steel. In general, the drinking water is suitable for use in 

mixing and curing. 

Water cement ratio is one the most important factor that affects the concrete 

strength, Fig. (1.1). The amounts of mixing water is more than that necessary for 

the hydration process by at least 10% so that the fresh concrete mix has an 

acceptable workability and take the shape of the formwork. Curing of concrete 
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is necessary to substitute or prevent the mixing water from evaporation so that 

the hydration process will continue. 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.2.4 ADMIXTURES 

Admixtures are either: 

a. Chemical or  

b. Mineral materials. 

It is added to the four concrete constituents before or after mixing to change 

or improve some of the concrete properties during the fresh or hardened 

state. The effects of admixtures can be summarized as follow: 

i- Improve the workability without increasing water, or decrease water and 

keep the same workability, 

ii- Retard the initial setting process, and therefore decreasing the heat 

resulting from the hydration process. This is necessary also when casting 

in hot weather. 

iii- Accelerating the strength development when casting in cold weather, and 

calcium chloride is usually used. 

iv- Increase the compression strength, like the silica fume. 

v- Increase the resistance of concrete to freezing and thawing, where the 

concrete member may be subjected to frequent freezing and thawing. This 

is achieved by either using air entrained cement or some chemicals that 

create air voids inside the concrete mass.   

 عاير الكسرم

Figure (1.1) Effect of water cement ratio on the flexural 

and compression strength of concrete 
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1.3  WORKABILITY 

To get a concrete with good quality, adequate amount of water should be used to 

make the fresh concrete consistent, easy to finish, moldable, and surround the 

reinforcing bars. If excessive amount of water is added, the concrete becomes 

porous, weak, and exhibit high shrinkage. There are many factors that affect the 

workability of concrete: 

i- Amount of water, 

ii- Aggregate to cement ratio,  

iii- Coarse aggregate to fine aggregate ratio, and 

iv- Maximum aggregate size. 

There are many methods for measuring the workability of concrete indirectly: 

i- Slump test, 

ii- Compacting factor test, 

iii- Kelly ball test, and 

iv- V-B test. 

 

1.4 QUALITY CONTROL FOR CONCRETE 

As mentioned before, concrete is composed of four constituents and its 

properties in the fresh and hardened state depend on the quality and quantity of 

these constituents in addition to the curing regime after casting.  

Before any concrete member (slabs, beams, columns, and foundation) a concrete 

compression strength must be specified. This strength is that of a concrete 

cylinder (150 mm in diameter and 300 mm in height) at the age of 28 days after 

casting. A trial mix design is usually conducted in the laboratory to get the 

specified compression strength by carefully selecting the proportions of the four 

concrete constituents. In the laboratory, the used materials are very small and 

their quality, gradation, weights, and the curing regime (temperature and 

humidity) can be controlled not like the he large quantities in the site. Therefore,  

it is expected that the quality and strength of the concrete in the site is less than 

those in the laboratory. For these reasons, there should be a quality control 

measures for the quality and quantities of the used materials, mixing method, 

transportation method, casting, compaction, and curing regime so that the 

specified compression strength can be obtained.  

The ACI Code (26.12.1.1), recommends that a strength test (represent the 

average of (two concrete cylinders 150×300 mm) or (three cylinders 100×200 

mm) must be conducted for the following cases: 

i- For a certain type of concrete once a day for each 155 m3 of concrete 

or once for each 450 m2 of slabs and walls.   
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ii- In any project, if the number of tests is less than five, tests should be 

conducted on five random concrete batches or five tests if the number 

of batches is less than five.  

iii- If the volume of concrete is less 40 m3, there is no need to conduct any 

test, if the supervision authority proves that a satisfactory strength can 

be obtained according to ACI Code (2.12.26).  

The ACI Code (3.12.26) considered that the concrete quality is acceptable in the 

following cases: 

i- If the average of three consecutive tests equal to or greater than fc
' , 

ii- Any compression strength test (average of two cylinders) is not less 

than the required compression test by no more than 3.5 MPa if the 

compression strength is not greater than 35 MPa, or 0.1fc
' if the 

compression strength is greater than 35 MPa. 

1.5 MECHANICAL PROPERTIES OF CONCRETE 

Since concrete is composed of four constituents, its properties depend on the 

proportions and properties of these four constituents mainly the water/cement 

ratio. There are many methods for designing concrete mixtures of certain slump 

and strength and can be referred to in the concrete technology textbooks. 

1.5.1 Compression Strength 

In the last decades, it was possible to make concrete with compression strength 

up to 100 MPa or even more. However, such concrete has many limitations on 

its use. In ordinary reinforced concrete buildings, the compression strength may 

range from 20 to 40 MPa. In prestressed and precast concrete, higher strength is 

required and may range from 30 to 60 MPa. In multistory buildings, It is 

preferable to use concrete of high strength in the columns.  

Compression strength usually measured by means of cylinders or cubes, and the 

cylinder will be used in this course as per the ACI Code.  

The compression strength of a cylinder is that for a (150×300 mm) 28 days after 

casting under a certain rate of loading. The ACI Code (19.2.1.1) limited the 

strength of concrete according to the type of building as shown in the Table 

below.  

Table (2) Concrete strength for various Buildings and Types of 

Concrete 

'
cf

 Concrete Type of building 

Maximum strength Minimum strength 

No limit 17 Normal and 

lightweight 

General  

No limit 17 Normal weight Moment resisting 



8 
 

(1)35 17 Lightweight  frames and some 

structural walls 
(1) Higher compression strength may be used, if it is demonstrated that the lightweight 

members have strength and rigidity equal to or more than those constructed using 

normal weight concrete of the same strength. 

The behavior of concrete and the stress-strain relationship depends on the 

compression strength, age, rate of loading, cement and aggregates properties, 

and the type and size of the tested specimens. Figure (1.2), shows some stress-

strain relationships of concrete with various strength tested concentrically at the 

age of 28 days. 

It can be noticed from the Figure that the peak strength is attained at a strain of 

0.002 to 0.0025 for normal concrete, and the maximum strain range from 0.003 

to 0.008. The ACI Code (22.2.2.1) limit the maximum strain by 0.003.  

Poisson's ratio, range from 0.11 for high strength concrete to 0.21 for low 

strength concrete.  

1.5.2. Modulus of Elasticity 

 The modulus of elasticity of concrete depends on the compression strength, 

cement and aggregates properties, rate of loading, size and type of the tested 

specimen. Figure (1.3) shows a typical stress-strain curve for concrete. The 

figure shows the initial modulus, secant modulus, and tangent modulus. The 

secant modulus represents the slope of the straight line from the origin to about 

50% of the compression strength and usually used as a modulus of elasticity for 

concrete according to the ACI Code. Paragraph (19.2.2.1) of the ACI Code, 

define the modulus of elasticity for concrete with density ranging from 1450 to 

2550 kg/m3 as follow: 

'5.1043.0 ccc fwE =                                                                      (1.1)   

Where Ec and fc
' are in MPa, and wc is the concrete density in kg/m3. For normal 

weight concrete whose density about 2300 kg/m3, Equation (1.1) becomes: 

(1.2)                                                                   𝐸𝑐 = 4750√𝑓𝑐
′ 
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It was found that the above equations give modulus of elasticity values more 

than the true values by around 29% when the compression strength values 

ranges from 40 to 80 MPa for normal and lightweight concrete. The following 

equation gives a fair estimation of elastic modulus for normal concrete with 

compression strength between 20 to 80 MPa and lightweight concrete with 

compression strength between 20 to 60 MPa: 

5.1' )2300/)(68953320( ccc wfE +=               (1.3) 

 1.5.3 Tensile Strength 

Tensile stresses are created in reinforced concrete members due to the shear 

forces, bending moments, and torsional moments. The tensile strength of 

concrete is very small (< 20%) of its compression strength. This low tensile 

strength causes cracks initiation even in the working conditions and causes 

redistribution of the stresses and internal forces. 
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Figure (1.2) Typical stress-strain curves for normal concrete  

tested concentrically 

Figure (1.3) Definition of the Elastic 

modulus 

Strain 
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 Maximum 
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between 0.003 
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Secant modulus at 0.5fc

' 

Initial tangent modulus 

Tangent modulus at 0.5 fc'
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There are three methods to measure the tensile strength of concrete: 

i- Direct tensile strength, 

ii- Splitting tensile strength (Brazilian test), and 

iii- Flexural strength. 

The following Table show the range of the three tensile strength tests. 

Table (3) Range of Tensile Strength of Concrete for different tests 

Type of strength Normal Concrete Lightweight Concrete 

Direct tensile strength 0.25-0.4√fc
' 0.17-0.25√fc

' 

Splitting strength 0.50-0.67√fc
' 0.33-0.50 

Flexural strength 0.67-1.0√fc
' 0.50-0.67√fc

' 

 

1.5.4 Creep of Concrete 

Creep is the increase in strain under sustained stress; these strains are inelastic or 

plastic strains and increase with time at a reducing rate. The mechanism of creep 

or this plastic flow may be due to one or more of the following: 

i- Crystal flow of the aggregates and the hardened cement paste, 

ii- Plastic flow of the hardened cement paste surrounding the aggregates, 

iii- Decrease of the voids or pores in the concrete mass, and 

iv- Water flow from the cement paste due to stresses and evaporation.  

 The factors that increase the creep of concrete, are; (a) increase of the 

water/cement ratio, (b) increase in temperature and decrease of humidity, (c) 

loading the member in an early age, (d) increase of the load duration, (e) 

increase in stresses, (f) decrease in the volume/surface ratio of the member, and 

(g) type of cement and aggregates.  

Creep does not decrease the capacity of strength of the reinforced concrete 

members during the service conditions, but causes redistribution of stresses in 

concrete and steel. The followings are the effects of creep on reinforced concrete 

members: 

i- Increase in the long-term deflection of flexural members (slabs and 

beams), 

ii- In reinforced concrete columns, it causes increase of the stresses on 

steel and decrease of the stresses on concrete, and  

iii- In prestressed members, it causes reduction of the prestressing forces 

with time. 
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Figure 1.4: Deformation in a loaded concrete cylinder: (a) specimen 

unloaded, (b) elastic deformation, (c) elastic plus creep deformation, and 

(d) permanent deformation after release of load. 

 

1.5.5 SHRINKAGE OF CONCRETE 

As mentioned before, to get a workable fresh concrete the amount of mixing 

water should be more than that necessary for the hydration process. After the 

concrete cast, the excess water (not hydrated with cement) starts evaporating, 

resulting in shrinkage of concrete. This shrinkage could be attributed to the 

capillary action of water remaining in the pores. 

The concrete shrinkage increases with, (a) water / cement ratio, (b) cement 

content. (c) temperature and decrease with humidity, (d) surface / volume ratio, 

and (e) aggregates porosity. Figure (1.4) shows some shrinkage time 

relationships. 

Shrinkage creates mostly compressive stresses in steel and tensile stresses in 

concrete leading to cracking. Shrinkage causes increase in long time deflection 

in flexural members, which decrease with the presence of steel, it causes also 

reduction in the prestressing forces in prestressed concrete members.  
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Figure (1.5) Variation of shrinkage strains with time for normal and 

lightweight concrete 
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1.5.6. TEMPERATURE CHANGE 

Concrete like other materials, expands with temperature and contract with the 

temperature decrease. This temperature change creates internal stresses (tension 

and compression) depending upon the temperature gradient between the top and 

bottom surface. The treatment of temperature change is similar to that of 

shrinkage. The designer should take these stresses into consideration, such as 

providing expansion or contraction joints to decrease the internal stresses. 

1.6 REINFORCING STEEL 

The axial forces (tension and compression), shear forces, bending moments, and 

torsional moments create tensile stresses in concrete members; since the tensile 

strength of concrete is small compared with compression it will limit the 

strength of concrete members. When steel with higher tensile strength (100 

times than the tensile strength of concrete) is added to concrete and high 

ductility, the reinforced concrete member becomes stiffer and more ductile than 

the unreinforced member and capable of resisting high tensile stresses. In 

reinforced concrete members, concrete in the compression zone carries the 

compression stresses and steel in the tension zone carries the tensile stresses. 

Steel reinforcement, are used also in compression zones of columns and beams 

to carry compression stresses and in beams (in the form of stirrups) to carry 

diagonal tensile stresses created by shear and torsion that lead to shear failure. 

The reinforcing steel are present in the form: 

i- Bars that are used in all reinforced concrete members, 

ii- Wire fabrics that are used in flat, curved, and folded surfaces, 

iii- Wires that are used in prestressing members, and  

iv- Strands that are used in prestressing members. 

The ordinary reinforcing bars are usually deformed with lugs or protrusions to 

increase the bond and decrease the slippage with the surrounding concrete. 

Bars diameter usually range from 6 to 57 mm, Figure (1.6). 

 

 

 

 

 

 

 

 

 

Figure (1.6) Typical reinforcing bars  
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1.6.1 STRESS-STRAIN CURVES 

The factors that determine the properties of the reinforcing bars are: 

i- Yield strength fy, 

ii- Ultimate strength fu, and 

iii- Elastic modulus Es. 

The elastic modulus is usually constant for all the reinforcing bars, Figure (1.7) 

and equal to 200 GPa (200000 MPa), as in ACI Code (20.2.2.2). The 

prestresssing steel has elastic modulus slightly less than that for the ordinary 

reinforcing steel. 

The yield strength of the reinforcing bars is limited to 520 MPa for flexural 

members (slabs and beams) and 400 MPa for bars used shear and torsion. 

Figure (1.7) Typical wire fabrics 

Figure (1.8) Typical seven wire strands 
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Figure (1.9) Typical stress-strain curves of reinforcing 

steel, (a) complete curves, (b) first part enlarged 10 times 

(a) (b) 
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CHAPTER TWO 

DESIGN METHODS AND REQUIREMENTS 

2.1 INTRODUCTION 

Reinforced concrete is a composite, nonhomogeneous material and the 

properties and behavior of the two materials (concrete and steel) differs from 

each other completely. Concrete is a nonhomogeneous material strong in 

compression with nonlinear behavior, weak in tension, cracked during the 

service conditions, shrink due to evaporation of water, and creep when subjected 

to sustained load. While the reinforcing steel, is a homogeneous material with a 

high compression and tensile strength and high ductility also.  Therefore, it is 

not possible to use the methods and formulas used in mechanics of materials (for 

homogeneous materials) to find the strains, stresses, and deformation in the 

elastic or plastic stages, since reinforced concrete is not homogeneous, elastic, or 

completely plastic even when the external loads are small. For these reasons, 

most of the analysis and design methods used used for reinforced concrete 

members are empirical, i.e.; methods and formulas based on experimental reslts 

or results demonstrated with experience and time. These formulas, methods, and 

specifications are usually gathered in a code revised from time to time when 

theoretical or experimental results are available. This code contains also 

minimum and maximum limits for some factors used in the design related to the 

behavior and safety of the reinforced concrete members or the the structure as a 

whole. 

To design a cross-section, reinforced concrete member, or structure the nature 

and magnitude of the acting loads and its influence on the structure should be 

determined. These effects, may be a shear force, bending moments, torsional 

moments, and axial compressive or tensile forces. The methods of structural 

analysis are usually used to determine these internal forces. 

After this stage, the structural design is begin which include choosing a suitable 

cross-sections and finding the necessary area of steel.   

2.2 LOADS  

The loads acting on structures in general, can be classified into three categories, 

dead, live, and environmental loads.    

2.2.1 DEAD LOADS 

Sometimes called static or constant loads represent the weight of the structural 

member or any other load acting on the structure permanently.  It is so called, 

since its magnitude and direction of action is constant. It represents also, the 

finishing loads like, plastering, tiles, cement mortar under the tiles, and any 

other permanent electrical or mechanical fixtures. The magnitude of these loads 

can be determined after a preliminary design when all the cross-sections and 
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dimensions of the members are assumed. After analyzing the structure and 

determining the internal forces, these assumed dimensions can be fixed or 

revised depending on the structural design.  

2.2.2 LIVE LOADS 

As the name implies, these are the loads acting on the structure and represent the 

occupants of the structure, in roads and bridges it represent the traffic loads. It is 

called live since its magnitude, duration, and direction of action is variable. Its 

magnitude and place should be chosen to create maximum effects on the 

structure; these effects could be shearing force, bending moment, torsional 

moment, and axial forces individually or in combination.  

Values of these loads are usually recommended in codes of practice.    

2.2.3. ENVIRONMENTAL LOADS 

It represents the environmental effects such as, wind pressure, snow and rain 

loads, earth pressure, hydrostatic pressure, forces created by temperature 

change, force created by shrinkage and creep of concrete, forces created by 

differential settlement, and seismic forces. 

2.3. ELASTIC AND STRENGTH DESIGN METHODS 

There are two methods for designing reinforced concrete members. The elastic 

or working stress design method (working or service conditions) was used since 

1900 to the late 1950's. After that the strength design method (ultimate 

conditions) was developed.  

In the elastic design method, the member is designed for the working or service 

conditions under the effect of working or service loads (true value of the loads). 

In this stage, the stresses in concrete and steel should not exceed certain 

allowable limits (about 40-45% of their strength) so that the deformations at this 

stage are small and the structure is serviceable. The methods used for the 

analysis and design are those used in mechanics of materials for elastic 

homogeneous materials.  

Using this method does not give reliable results for the following reasons:  

i- The magnitude and distribution of the stresses created due to shrinkage 

cannot be known accurately, 

ii- With time creep occur and result in redistribution of stresses in 

concrete and steel, 

iii- Since the stress-strain relationship of concrete is not linear, it is not 

possible to determine the factor of safety between the ultimate (failure) 

and working conditions, and 

iv- Since the limitation is on the concrete and steel stresses, it is not 

possible to determine the difference between the applied loads.  

S. A. Al-Ta'an 
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The second method is the strength design method. In this method, the working 

(service) loads are increased by a factors to get the ultimate or factored loads. 

The dimensions of the cross-sections are chosen so that its design strength equal 

to or greater than the required strength obtained from the structural analysis. 

When calculating the design strength, the strength of the materials are assumed 

equal and fy for steel in tension and compression, and to fc
' for concrete in 

compression and the nonlinear relationship between stress and strain in concrete 

should be taken into account. 

Since 1971, the majority of the ACI Code was devoted to the strength design 

method, and the working stress design method can be used as alternative 

method. 

Even when the strength design method is used, the conditions of the members 

comprising the structure must be checked against the limiting serviceability 

criteria, like deflection, cracking, and vibration. These limitations take into 

account the aesthetic, functional aspects of the members, and comfort to the 

occupants.   

2.4. SAFETY PROVISIONS  

All the structural members or structures must be designed to resist loads more 

than that expected in the normal conditions. The reason is that there are many 

factors that let the designer takes into account the increase in the design loads 

that may occur. These factors can be summarized as follow: 

i- The true value of the loads may differ from that used in the design, 

ii- The true loads distribution may differ from that used in the design, 

iii- The magnitude and distribution of the loads acting on the structure 

during construction, like construction materials, and forms cannot be 

estimated accurately, 

iv- Changing the function of part or the whole structure may differ from the 

originally assumed loads, 

v- The unavoidable assumptions and simplifications used for the analysis of 

the structure may give effects of the actual loads differ from the actual 

effects, and 

vi- The true behavior of the structure may differ from that assumed during 

analysis and design. 

Based on these factors, all the codes of practice recommended what is called 

load safety factor which is usually greater than 1.0.  These factors represent the 

ratio of the ultimate (factored) load to the working (service) load, and this factor 

differ with the type of load (dead, live, wind, etc.). The value of these load 

factors depends on statistical analysis and to some extent on experience.  

 

S. A. Al-Ta'an 
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2.4.1 ACI CODE LOAD FACTORS OF SAFETY 

The ACI Code load factors are used for working (service) loads (dead, live, and 

environmental). After analyzing a structure under the action of these factored 

(ultimate) loads, the internal forces or (U = required strength) can be found 

which may include, Vu shear force, Pu axial force, Mu bending moment, and Tu 

torsional moment. The subscript (u) is used to denote that the action is ultimate 

or (factored). 

Table (2.1) shows the load factors, it can be noted that the loads that can be 

estimated accurately like dead loads has load factors less than those with more 

variation like live load.    

Using these factors means that there is a probability of (1/1000) that the true 

ultimate loads can exceed the calculated ultimate loads. 

Table (2.1) Summation of the factored loads to determine the required 

strength (U) according to the ACI Code  

Factored load Load state 

U= 1.4D Dead load  

U= 1.2D + 1.6L Basic state 

U=1.4D + 1.4F Dead load and fluid pressure 

U=1.2(D+F+T)+1.6(L+H) + 

0.5 (Lr or S or R) 

Dear load, fluid pressure, temperature change, 

creep, shrinkage, and differential settlement 

U= 1.2D + 1.6 (Lr or S or R) 

+ (1.0L or 0.8W) 

Dead load, live load, snow load, or rain and 

wind load 

U= 1.2D + 1.6W + 1.0L + 

0.5(Lr or S or R) 

Dead load, wind load, live load, snow or rain 

U= 1.2D + 1.0E + 1.0L + 

0.2S 

Dead load, live load, and seismic load or snow 

U= 0.9D + 1.6W + 1.6H Dead load, wind load, and earth pressure 

U= 0.9D + 1.0E + 1.6H Dead load, seismic load, and earth pressure 

 

D = Dead loads, E = Load effects of seismic forces, F = Loads due to weight and 

pressures of fluids, H = Loads due to weight and pressure of soil,  L = Live 

loads, Lr = Roof live loads, R = Rain loads,  S = snow loads, T = cumulative                                                                   

effect of temperature, creep, shrinkage, differential settlement, and shrinkage.  

S. A. Al-Ta'an 
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Example 6: 

The frame in Example (1) is subjected to a uniformly distributed working dead 

and live loads equal to 15 kN/m and 20 kN/m respectively and a concentrated 

working wind load of 25 kN at point (f). Find the ultimate load and moment that 

should be carried by one of the side columns.  

Solution: 

According to the ACI Code, the frame must be analyzed for four loads 

combinations (vertical and horizontal loads): 

(a) 1.4𝐷𝐿 

(b) 1.2𝐷𝐿 + 1.6𝐿𝐿  

© 1.2𝐷𝐿 + 1.6𝑊𝐿 + 1.0𝐿𝐿 

(d) 0.9𝐷𝐿 + 1.6𝑊𝐿 

 

Figure (a) below shows the factored loads, reactions and the moments created 

from the vertical DL only. 

 

 

 

 

 

 

 

Figure (b) below shows the factored loads, reactions and the moments created 

from the vertical DL and LL. 

 

 

 

 

 

 

 

wu = 21 kN/m  

4.26 4.26 

59.93 59.93 182.57  

14.91 14.91 

a  b  c  

f  

e  

d  

(a) 1.4DL 

wu = 50 kN/m  

10 10 

142.7  142.7 434.7  

35.5 35.5 

a  b  c  

f  

e  

d  

(b) 1.2DL+1.6LL 
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Figure (c) below shows the factored wind load, reactions and the moments 

created from the wind load.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure © below shows the load combination (1.2DL+1.6WL+1.0LL) and 

reactions and the moments created: 
 

 

 

 

 

 

 

 

 

 

Figure (d) below shows the load combination (0.9DL+1.6WL) and reactions and 

the moments created: 

 

 

 

 

 

 

 

 

 

 

 d = 0.9DL+1.6WL 

40 kN 

7.8 kN 

117.37 kN 48.25 kN 
28.81 kN 

13.2 kN 

27.16 

19 kN 

66.5 46.34 

= 13.5 kN/m  uw 

40 kN 

10.5 10.5 19 

36.75 36.75 

9.722 9.722 

66,5 

zero 

(c) 1.6WL 

40 kN 
= 38 kN/m  uw 

118.17498.730 330.372 

18.1 19 2.9 

63.73 66.5 9.77 

c = 1.2DL+1.6WL+1.0LL 

S. A. Al-Ta'an 



8 
 

Therefore, the column must be designed three times: 

1- For a factored axial load and moment of 142.7 kN and 35.5 kN.m 

respectively, and  

2- For a factored axial load and moment of 118.174 kN and 76.3 kN.m 

respectively.  

3-  For a factored axial load and moment of 48.25 kN and 46.34 kN.m 

respectively.  
 

                                                                                             

2.4.2. STRENGTH REDUCTION FACTORS 

The dimensions of the structural members are chosen so that their design 

strength (φSn) equal to or greater than the required strength (U). The design 

strength is a reduced value of the nominal (ideal or theoretical strength) (Sn).   

The nominal strength is calculated according to the assumptions and 

requirements recommended by the ACI Code and subscripted by (n).  

The factors that make the design strength less than the nominal strength are as 

follow: 

i- The true strength of the materials especially concrete may be less than that   

      adopted in the design if the quality control measure is poor. 

ii- The dimensions of the constructed structural members may differ from  

      that fixed by the designer or that fixed on the structural drawings, and this  

      depend on the site supervision. 

iii- The reinforcing bars may not be placed in the right positions. 

iv- Accuracy of the design calculations and assumptions, and empirical 

equations used may not give the true value of the strength. 

Therefore, if any structural member is subjected to shear force, bending 

moment, axial forces, or torsional moment, the design strength must equal to or 

greater than the required strength as follow: 

φVn ≥ Vu 

φMn ≥ Mu 

φPn ≥ Pu 

φTn ≥ Tu 

The left hand side represent the design strength and the right hand side the 

required strength which is found from the structural analysis under the action of 

the factored loads,  is the strength reduction factor which is usually less than 

1.0. There are other factors in addition to those mentioned above that effect the 

value of , these are: 

S. A. Al-Ta'an 



9 
 

i- Type of expected failure, whether in concrete or steel, 

ii- Importance of the member (column, beam, slab, etc.), and 

iii- Type of the building (school, warehouse, residential building, etc.). 

Table (2.2) shows the strength reduction factors as recommended by the ACI 

Code. 

Using these factors give a probability of (1/100) that the strength of a member is 

less the design strength. Therefore failure, whether due to increase in loads or 

strength reduction may occur with a probability of;  

100000

1

1000

1

100

1
=  

Table (2.2) Strength reduction factors according to ACI Code 

  Type of strength عامل تخفيض المقاومة  

0.9 Members where tension is controlled  

0.75 

0.65 

Members where compression is  controlled, 
members with spiral reinforcement, 

Other members 

0.75 Shear or shear and torsion 

0.65 Bearing on concrete 

0.55 
Bending, compression, shear, and loading on 

plain concrete 

  

2.5. DUCTILITY IN REINFORCED CONCRETE BUILDINGS 

Ductility in reinforced concrete buildings is one of the safety measures that 

should be provided. Ductility means, maintaining strength while sizeable 

deformation occurs, (deflection, curvature, rotation, cracks, etc.) the failure 

occurs slowly and gradually like rubber and steel. On the contrary, brittle 

materials fail suddenly with small deformation before failure, like rock and 

concrete, i.e.; failure occurs without warning.  

Ductility is considered important for many reasons: 

i- In statically indeterminate structures, ductility allows stressed parts to 

retain its strength in spite of the large deformation, and let parts with 

S. A. Al-Ta'an 
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smaller stresses take additional loads. This means that failure of one 

section or member does not lead to failure of the whole structure. 

ii- Structures located in seismic areas, or may be subjected to explosion, 

the structure should have a capacity to absorb energy by providing the 

members with reasonable ductility.   

iii- Beams and slabs with large ductility, will give warnings before the 

member reach its ultimate or failure stage.   These warnings could be 

wide cracks, large deflection, and curvatures and rotation which lead 

to evacuation of the building or reducing the applied loads.   

 

 

 

 

S. A. Al-Ta'an 
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CHAPTER THREE 

Analysis by the Working Stress Design Method  

(Elastic design method) 
    

 

3.1 Introduction 
 
In chapter two, it was mentioned that there are two methods for analysis and 

design of reinforced concrete structures; the working stress design and 

strength design method. Whichever method is used, the structural member or 

the structure should be: 

i. Durable, i.e.; sustain the environmental conditions without reduction in 

strength or needs maintenance frequently, 

ii. Have adequate strength when subjected to overloads (ultimate loads), 

and 

iii. Serviceable, the deflection and cracks are within the limits set by the 

codes of practice. 

 

In this chapter, a brief description of the working stress design method will 

be presented. 

 

3.2. Fundamental Assumptions 

     The working stress design method (straight line or elastic design method) for 

flexural members (slabs and beams) depends on four basic assumptions: 

 

i. Plane section before bending remains plane after bending, which means that 

the strains are proportional to the distance from the neutral axis. This 

assumption will be used also in the strength design method. 

ii. Stresses and strains are elastic and proportional to each other in concrete and 

steel. For concrete this assumption is valid up to about 50% of fc
' and for 

steel up to the yielding point. 

iii. Tensile strength of concrete is neglected if cracks initiate at the tension face. 

This assumption will be used also in the strength design method. 

iv. There is a perfect bond between the reinforcing bars and the surrounding   

  concrete. There is no slip between concrete and steel and the strains in 

  both are equal. This assumption will be used also in the strength design 

  method. 
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3.3. Stresses in Reinforced Concrete Members 
 

3.3.1 Axial Compression in the Elastic State 
 
Consider the reinforced concrete column in Fig. (3.1) from the fourth 

assumption, the strain at any point in concrete ϵc = fc /Ec equal to the strain in 

steel ϵs = fs /Es,  

 

 

 

 

 
 
 
 
 
 
 
 

 
 

Figure (3.1) Reinforced Concrete Column subjected to Axial Load 

s

s

c

c

E

f

E

f
=                                                                      (3.1) 

 fc and fs are the stresses in concrete and steel respectively, Eq.(3.1) can be 

rewritten as follow:  

 

 

cs fnf .=                                                                                 (3.2) 

 
n is called the modular ratio = Es / Ec  (usually rounded to the nearest integer). 

Consider the column of Fig. (3.1) subjected to a load (P), this load will be shared 

by concrete (Pc) and steel (Ps). The load carried by concrete equal to: 

 

     Pc=fcAc =fc(Ag-Ast)                                                                            (3.3) 

 

Where fc is the concrete stress, and Ac is the net concrete area and equal to: 

 

    Ac = Ag - Ast                                                                                       (3.4)  

Ag = gross concrete area (b×h), and Ast = total area of steel. The load carried by 

the steel reinforcement equal to: 

         Ps =fs Ast                                                                                      (3.5)                                                                            

Δ = Δc = Δs 

ϵ = Δ/H = 

  ϵc = Δc/H = 

ϵs = Δs/H 

H
 

P 
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Adding equations (3.3) and (3.5) to get the total load carried by the column: 

  

       P =fcAc +fs Ast                                                                                  (3.6)  

 

Substituting (fs) from Equation (3.2) into Equation (3.6), the following Equation 

is obtained: 

 

  P=fcAc+nfcAst=fc(Ac+nAst)=fc(Ag-Ast+nAst)=fc[Ag+(n-1)Ast]=fcAt         (3.7) 

 

Where At is the transformed area and equal to: 

 

At=Ac+nAst=Ag+(n-1)Ast                                                                   (3.8) 

 

The transformed area At can be interpreted as the area of a fictitious concrete 

cross section, Fig. (3.2). 

 
Figure (3.2) Gross and transformed are, (a) reinforced concrete section, (b) 

transformed section, (c) transformed section 

 

Example 3.1 

 A reinforced concrete column 350×450 mm reinforced with four bars (ɸ = 25 

mm) and subjected to a compressive axial load of P = 1.5 MN. fc
' = 30 MPa and 

fy = 420 MPa. Calculate the stresses and strains in concrete and steel.  

   

Solution 

 

 
 

219644914 mmAst ==  

21555361964450350 mmAc =−=                                                     

450 mm 

3
5

0
 m

m
 

4# 25 



5 
 

22 171248.017124819648155536 mmmAt ==+=                                                                   

 Using Equation (3.7) to calculate the concrete stress: 
MPaAPf tc 76.8171248.0/5.1/ ===  

000338.07625907.8/ === ccc Ef  << 0.002 

MNfAP ccc 362.176.8155536.0 ===   (90.8%) 

MPanff cs 1.7076.88 ===  

002.0200000/400/000351.0200000/1.70/ ====== syysss EfEf   

MNfAP ssts 138.01.70001964.0 ===    (9.2%) 

Example 3.2 

 

For Example 3.1 calculate the load and the steel stress that can be carried by the 

column if the concrete stress = 13.5MPa.  

Solution 

 
MNAfP tc 311.2171248.05.13 ===  

MPanff cs 1085.138 ===  

 
3.3.2 Axial Compression in the Ultimate State 

 

Strength is the maximum load that the structure or member will carry. When the 

load on the column increases; the stresses and strains in concrete and steel will 

increase also. When the concrete reach a strain of 0.003 (stress = fc
'), crushing of 

concrete will occur and the steel will reach a stress of 

(fs=Es×εs=200000×0.003=600 MPa) exceed the yield strength fy = 400 MPa. 

Therefore; the maximum load that will be carried by the column equal to: 

   

       ystccn fAAfP += '85.0                                                                              (3.9) 

Example 3.3 

 

Calculate the maximum load that the column of Example (3.1) will carry?.  

 

Solution 

MNfAAfP ystccn 752.4400001964.0155536.03085.085.0 ' =+=+=  

MNAfP ccc 966.3155536.03085.085.0 ' === (83.5%) 

MNfAP ysts 786.0400001964.0 === (16.5%) 

3.3.3 Axial Tension in the Elastic Uncracked State 

 

When the tension force is small; the stresses and strains are also small (less than 

the tensile strength of concrete) and both materials will behave elastically. 
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 The tensile force will be carried by concrete and steel: 

)()( stcctctstcctsstcct nAAfnfAAffAAfP +=+=+=                     (3.10) 

 

Where fct = tensile stress in concrete. 

 

Example 3.4 

 

Calculate the stresses in concrete and steel for the column of Example (3.1), if it 

is subjected to a tensile load of 500 kN. 

 

Solution 

MPafMPaAPf rtct 4.33062.092.2171248.0/5.0/ ===== (uncracked member). 

MNfAP ctcc 454.092.2155536.0 ===  (0.908)  

MPanff cts 4.2392.28 ===     

MNfAP ssts 046.04.23001964.0 ===   (0.092) 

 

Example 3.5 

 

What is the maximum tensile load that the member of Example (3.1) will carry 

before the concrete crack? 

 

Solution 

MPaff rct 4.33062.0 ===  

MNfAP ctcc 5288.04.3155536.0 ===  

MPanff cts 2.274.38 ===     

MNfAP ssts 0534.02.27001964.0 ===    

MNPPP scnt 5822.00534.05288.0 =+=+=  

%8.90=cP  

%2.9=sP  

 

3.3.3 Axial Tension in the Ultimate State 

 

When the tension force increases; the stresses and strains are also increases and 

when the tensile stress in concrete exceeds the tensile strength, the concrete will 

crack and the steel will carry the entire tensile load. The maximum tensile load 

that the member will carry equal to: 
 

ystnt fAP =                                                                     (3.11) 
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Example 3.6 

 

What is the maximum tensile load that the member of Example (3.1) will carry? 

 

Solution 

 
MNfAP ystnt 7856.0400001964.0 ===  

 

3.4.  Analysis of Rectangular Uncracked Reinforced Concrete Sections  

 

Figure (3.3) shows a rectangular single reinforced section at the onset of 

cracking stage which is before the working or service conditions.  The cracking 

stage starts when the tensile stress at the tension face equal to the modulus of 

rupture fr =0.62√fc
'. If the reinforcing steel is neglected, the neutral axis for 

rectangular section is located at the mid depth of the section (h/2), and the 

stresses can be calculated using the bending of elastic homogeneous sections, 

 

I

yM
f


=                                                           (3.13) 

By substituting f=fr and M = Mcr (cracking moment) can be found as follow: 

t

gr

cr
y

If
M


=                                                      (3.14) 

Ig = moment of inertia of the gross section (ignoring the steel) = b.h3/ 12 and yt = 

distance from the N.A. to the tension face, which is in this case = h/2. 

Substituting Ig and yt in Eq.(3.14), the cracking moment for rectangular section 

becomes: 

6

.

)2/(12

. 23
hb

f
h

hbf
M r

r

cr =


=                                     (3.15) 

 

  

  

  

  

  

  

 

 
Figure (3.3) Strain and stress distribution in uncracked section, (a) cross-section 

dimension, (b) strain distribution, (c) stress distribution. 

a) ) b) ) c) ) 

b 

ا
h

 

d
 

As 

c 

t 

s
 

cf 

rf 

nff scs /= 

c 
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If the reinforcing steel is to be taken into account in calculating the moment of 

inertia, the steel has to be transformed into equivalent area of concrete, Figure 

(3.4).  

For steel in the compression zone the equivalent area of concrete = (2n-1)As
' , 

and for steel in the tension zone = (n-1) As 

 

  

 

 

 

 

 

 

 

 

 

 

Figure (3.4) Uncracked reinforced concrete section, (a) reinforced concrete 

section, (b) transformed section 

 

To find the neutral axis, use principle of the moment of area for the whole 

section about the compression face: 

     

ss

ss

AnAnhb

dAndAnhb
c

)1()12(.

.)1()12(2/.
'

''2

−+−+

−+−+
=                         (3.16) 

 

The moment of inertia of the uncracked transformed section Iut equal to: 

 
22''33 )()1()()12(3/)(3/. cdAndcAnchbcbI ssut −−+−−+−+=     (3.17) 

 

EXAMPLE (3.7) 

A rectangular single reinforced section with b = 300 mm, h = 450 mm, d = 390 

mm, As = 4#20 = 1256 mm2. fc
'=20 MPa, and  fy = 276 MPa. Calculate the 

cracking moment, the steel, and concrete stresses. 

 

SOLUTION 

 
 

 

Using Eq.(3.16) to calculate the neutral axis depth: 

b=300mm 

h
=

 4
5
0
m

m
 

d
=

3
9
0
 m

m
 

As 2

)1( sAn −
 

2

)1( sAn −
 

5024 5024 

(a) (b) 

/2’s1)A-(2n /2’s1)A-(2n 
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mm236
1256)19(450300

3901256)19(2/)450(300
c

2

=
−+

−+
=  

The modulus of rupture of concrete equal to: 

MPaff cr 8.262.0 ' ==  

The compression stress in concrete fc equal to: 

MPa
ch

fc
f r
c 1.3

236450

8.2236

)(

.
=

−


=

−
=  

To calculate the stress in the tension steel, calculate the concrete stress at that 

level (fcs ) and then multiply it by (n) 

 

MPaf
c

cd
nfnf ccss 2.181.3

236

)236390(
9

)(
. =

−
=

−
==  

Calculate the moment of inertia of the uncracked transformed section Iut use 

Equation (3.8): 

 

43

49233

1053.2

1053.2)236390(125693/)236450(3003/)236(300

m

mmI ut

−=

=−+−+=
 

mkNmMN
ch

If
M utr

cr .2.33.0332.0
)236.0450.0(

00253.08.2

)(
==

−


=

−


=  

If the tension steel is neglected, c = h/2 = 0.45/2= 0.225m, and Ig=b.h3/12 = 

0.3×0.453/12=0.3×0.453/12= 0.002278 m4 (10% less than Iut), the cracking 

moment equal to: 

mkNmMN
h

If
M

gr

cr .4.28.0284.0
)2/450.0(

002278.08.2

)2/(
==


=


= (15%  less than the exact 

value). 

 
  

3.4 Flexural Stresses in Beams in the Elastic Cracked Stage 

 

Figure (3.5) show a beam in a cracked state, the tensile force carried by the 

tension steel equal to:  

).().(. scscssss AnffnAfAT ===                                       (3.18) 

 The subscript (s) is added to fc to refer to the steel location. The other form of 

the formula relates (n) to (As) instead of the stress, this means that the force in 

the tension steel equal to the concrete stress at the steel level (fcs) multiplied by a 

fictitious area of concrete (nAs). This area is called the transformed area, i.e.; 

area of steel (As) transformed to equivalent area of concrete (nAs). 

When the transformation process is done, the cross-section become 

homogeneous, i.e.; composed of one material which is concrete and the formula 
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for the bending of elastic homogeneous sections can be used for the analysis of 

the cross-section.   

                                             
3.5. Allowable Service Load Stresses 
 
During the working (service) conditions, the stresses should not exceed the 

following limits: 

i. In concrete, the compression stress fc ≤  0.45fc
'  

ii. In steel, the tensile  stress fs ≤ 140 MPa for fy ≤ 345 MPa, and 

iii. fs ≤ 165 MPa for fy ≥ 400 MPa, and 

iv. fs = 0.5 fy ≤ 200 MPa for steel in flexural members with diameter ≤ 10 

mm in one-way slabs with span ≤ 3.6 m. 

 

For steel in compression zones, the steel stress assumed equal to (2n) times the 

concrete compression stress adjacent to the steel, but ≤ allowable fs. 
 
3.6 Analysis of Rectangular Cracked Reinforced Concrete Sections 

 

When the moment acting on the section exceeds the cracking moment Mcr, and 

the tensile stress at the tension face exceeds the tensile strength of concrete and 

the section becomes cracked section. In this case the concrete in tension zone  

will no longer carry any stress and the whole tensile stresses will be resisted by 

the tension steel. The stress distribution in this case is as shown in Figure (3.4) 

below. The neutral axis depth is determined by equating the moment of the area 

under compression to that under tension:   

 

)(2/2 cdnAbc s −=                                            (3.19) 

 

 

 

 

 

 

 

 

 

 

 

 

Figure (3.4) Stress Distribution in Cracked Reinforced Concrete Section 

 

 

d
 

s
 

nff scs /= 

c 
b 

ا
h

 

As 

cf 

c 

snA 
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Solving the above equation for c, the moment of inertia of the section and the 

stresses in steel and concrete can be found. 

 

Example (3.8) 

 

The section of Example (3.7) is subjected to a bending moment of 60 kN.m, 

determine the concrete and steel stresses. 

 

Solution 

 

Since the moment is greater than the cracking moment found in Example (3.7), 

the section is cracked. Find the neutral axis depth: 

)390(125692/300

)(2/

2

2

cc

cdnAbc s

−=

−=
 

mmc 138=  

44

2323

108.9

)138.0390.0(001256.093/)138.0(3.0)(3/

m

cdnAbcI sct

−=

−+=−+=
 

MPafAllMPa
I

cM
f c

ct
c 9.4.8

00098.0

138.006.0
==


=


=  

 

.140.9.138
00098.0

)138.039.0(06.0
9

)(
MPafAllMPa

I

cdM
nf s

ct
s ==

−
=

−
=  

 

Problems 

P.3.1. A circular reinforced concrete column 400 mm  

diameter reinforced with six bars (ɸ = 25 mm,  

Ast = 6×491= 2946 mm2). The column is subjected to a  

compressive axial load of P = 1.5 MN. fc
' = 35 MPa and 

 fy = 400 MPa. Calculate the stresses and strains in  

concrete and steel.  

P.3.2. For P.3.1., calculate the load and the steel stress that  

can be carried by the column if the concrete stress = 0.45 fc
' =15.75MPa.  

P.3.3. For P.3.1., calculate the maximum load that the column will carry?. 

P.3.4. A square reinforced concrete column with  

a side length of 400 mm reinforced with eight bars  

(ɸ = 20 mm, Ast = 8×314 = 2512 mm2).                             

Calculate the stresses in concrete and steel,  

if it is subjected to a tensile load of 500 kN. 

 fc
' = 30 MPa and fy = 276 MPa. 

4# 20 

400 mm 

4
0

0
 m

m
 

 

D = 400 mm 

6# 25 
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P.3.5. What is the maximum tensile load that the column of P.3.4. will carry 

before the concrete crack?. 

P.3.6. What is the ultimate tensile load that the column of P.3.4. will carry?. 

P.3.7. A rectangular single reinforced section with  

b = 300 mm, h = 500 mm, d = 440 mm, As = 4#20  

= 1256 mm2. fc
'=25 MPa, and  fy = 276 MPa. Calculate  

the cracking moment, steel, and concrete stresses  

two times, by neglecting the tension steel (Ig), and taking  

the tension steel into account (Iut). 

P.3.8. The section of P.3.7. is subjected to a bending  

moment of 65 kN.m, determine the concrete and steel  

stresses. 

  

 

 

b=300mm 

h
=

 5
0
0
m

m
 

d
=

4
4
0
 m

m
 

As 
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Flexural Analysis of Beams using the Strength 

Design Method 
4.1 Fundamental Assumptions 

i. Plane section before bending remains plane after bending,  

ii. Stress- strain relationship for concrete and steel are known, 

iii. Tensile strength of concrete is neglected, 

iv. There is a perfect bond between the reinforcing bars and the   

     surrounding concrete.  

 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

Figure (4.1) Variation of strains and stresses with increasing loads,        (a) 

Beam elevation, (b) cross-section, (c) uncracked stage, (d) working stage, (e) 

ultimate stage  

4.2 Equivalent Rectangular Stress Block  
The actual stress distribution in compression is replaced by an equivalent 

rectangular stress block, with average stress of '85.0 cf  and depth (a = β1×c): 

For 28' cf MPa 85.01 = , for each increase of 6.89 MPa in '

cf , 1  is decreased 

by 0.05: 

 

)28(00725.085.0 '
1 −−= cf   65.0                                                   (4.1) 

 

(a) 

b  

h
 

 

d
 

 

 sf 

rf 

c f 

C
 

 

c ε 

As  
s ε 

(b) (c) (d) 

s ε 

c ε 
c f 

 sf 

(e) 

s ε 

c ε 

c f 

 sf 
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Table (4.1) Variation of 1 with '
cf  

6.55 55 50 40 35 30 28 '
cf 

650.0 654.0 690.0 763.0 799.0 836.0 85.0 1 

 
4.3 The Balanced Rectangular Beam 

The balanced strain condition is defined as that at which the compression strain 

in concrete = 0.003 and that in the tension steel syy Ef /= , Figure (4.2). From 

the similar strain triangles, cb : 

  

sy

b

Efd

c

/003.0

003.0

+
=                                                                            (4.2) 

Substitute the value of Es=200000 MPa: 

d
f

c
y

b 
+

=
600

600
                                                                               (4.3) 

The depth of the stress blocks ab: 

d
f

ca
y

bb
+

==
600

600 1
1


                                                                         (4.4) 

 
 
 
 
 
 
 
 
 

 
 

 

 

 

Using the second equation of equilibrium 0=Fx , when there is no external 

horizontal force, tbcb NN =  

      

                                                                    (4.5) ysbbc fAbcf ....85.0 1

' =

h
 

 

d
 

 

 ćf   

yf 

b< c ba 

 ybdfb=ρ yf sA= tnbN 

0.85 fC
'
  

N.A  

bc 

0.5a 

bc 'C= 0.85fc N 
 

(b)  (a)  

 s/ E yf 

0.003 

b 
(c)  

Figure (4.2) Rectangular beam in a balanced strain condition, (a) strain 

distribution, (b) actual stress distribution, (c) equivalent stresses and 

resultants   
 

1k

2k

31.kk

1
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substituting  dbA bsb .=  in the above equation, where b  is the balanced 

reinforcement ratio, equation (4.5) becomes: 

  

                                                                      (4.6) 

 

yy

c
b

ff

f

+
=

600

600
85.0

'

1                                                                                      (4.7)                                                                 

The resultant of the compression stresses Ncb is located at the center of the stress 

block, at a distance (ab/2 ) from the compression face, the lever arm z (distance 

between Ncb and Ntb ) equal to: 

2/bb
adz −=                                                                               (4.8)  

If the depth of the beam is constant (tension face parallel to the compression 

face) Ncb and Ntb are parallel, equal, and opposite and creating a couple Mnb 

(internal resisting moment or nominal flexural strength): 

                             
btbbcbnb zNzNM ==                                                                          (4.9) 

If MPaf c 20' =  and MPaf y 276= , the following values of the variables in Eqs. 

(4.3) to (4.9) can be obtained: 

 
ddcb 685.0

276600

600
=

+
= 

ddca bb 582.0685.085.0
1

===   

0359.0
276600

600

276

20
85.085.0

600

600
85.0

'

1 =
+

=
+

=
yy

c
b

ff

f
  

dddadz bb
709.02/582.02/ =−=−=  

dbbdbafN ccb .9.9.582.02085.0..85.0 ' ===  
dbdbfdbN ybtb .9.9276).(0359.0... ===  

2.02.7)709.0(.9.9 dbddbzNzNM btbbcbnb ====  

For other shapes like T, L, I, double reinforced beams, and other special shapes, 

the same procedure can be followed to calculate the nominal balanced flexural 

strength by assuming that the compression stress is constant across the depth and 

equal to 0.85fc
’ whatever the shape of the compression zone. 

 

4.4 Modes of Failure according to ACI Code 

 

The ACI Code considers the structural reinforced concrete member reach its 

nominal flexural strength when the compression strain attains a value of 0.003. 

yb

y

c fdbb
f

d
f ...

600

600
..85.0 1

'  =
+
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The strain (ϵt) in the first layer of tension steel (adjacent to the tension face) can 

be found from the strain triangles, Figure (4.4). When (ϵt) ≤ 0.002, the cross-

section is in the compression controlled zone (φ=0.65), and the failure is sudden 

without visual warnings like large deflection and cracks.  When (ϵt) ≥ 0.005, the 

cross-section is in the tension controlled zone (φ=0.90), and failure is preceded 

by large deflection and cracks. When the strain (0.002 < ϵt < 0.005) the cross-

section is in the transition zone and the strength reduction factor φ equal to:  

                                                                                                                                                                          

3/250)002.0(65.0 −+= t         tied members                                         (4.10a) 

50)002.0(75.0 −+= t              spiral members                                       (4.10b)                                         

                                     
    

 
 

 

 
 

 

 
 

 

 

  
 

 

 

 

 

 

 
 
 
 

 
 

 

Figure (4.4) Variation of φ with the strain ϵt 

 

=0.003c ε 

02.00>t ε> 0.005 

Transition 

Control 

=0.003c ε 

0.005 ≥t ε 

Tension 

Control 

=0.003c ε 

≤ 0.002t ε 

Compression 

Control 
Figure (4.3) Modes of Failure according to ACI Code 

 

 

0.001        0.002         0.003         0.004        0.005         0.006 

0.9  

0.8   

0.7  

0.6   

0.5 

0.4 

0.3 

0.2 

0.1 

Compression 

controlled 
    Transition zone 

Tension 

controlled 

 

 

90.0= 

t 

ɸ =0.75+(ϵt-0.002)50 

ɸ =0.65+(ϵt-0.002)250/3 

ɸ =0.75 

ɸ =0.65 
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4.5 Maximum Reinforcement Ratio 

  

The balanced beam fails by yielding of the tension steel (ϵs = ϵy =fy/Es) and 

crushing of concrete (ϵc = ϵcu = 0.003), this failure is not preceded by visual 

warning like large deflection and wide cracks, while tension failure is preceded 

by visual warning, like large deflection and wide cracks or ductile failure. 

Ductility means, maintenance of strength while sizable deformation occurs. To 

ensure that this failure will occur, the ACI Code limits (ϵt ≤ 0.004) in beams and 

columns subjected to small axial load (≤ 0.1fc
' Ag). the following example shows 

the method of calculation: 

If MPaf c 20' =  and MPaf y 276= ,  the neutral axis depth (cmax.) equal to: 

 

  ddc
7

3

007.0

003.0
max ==                                                                                 (4.11a)

  

ddda 364.085.0)7/3(
7

3
1max ===                                                           (4.11b) 

The subscript (max.) is used to refer to the maximum conditions.  

dbbdfbafN ccc .193.6).
7

3
(85.0.85.0 1

'
max

'
max ===   

bdfdbfN cyt ).
7

3
(85.0. 1

'
.max.max  ==  

0224.0)
85.0

(
7

3
'

1.max ==
y

c

f

f
                                                                             (4.12) 

 dddadz 818.02/
7

3
2/ 1.max.max =−=−=               

The nominal maximum flexural strength, (Max. Mn) equal to: 
22

.max 06.5. bdkbdzNMMax ncn ===  

Where kn = 5.06 MPa 

The design maximum flexural strength equal to: 
817.03/250)002.0004.0(65.03/250)002.0(65.0 =−+=−+= t  

222 14.4)06.5(817.0 bdkbdbdM mn ===  

Where MPakm 14.4= . Table (4.2) shows the variables, kn, km, amax., and ρmax. for 

different values of concrete and steel strengths when ϵt = 0.004 which is the 

maximum strain recommended by the ACI Code. Table (4.3) shows the 

variables, kn, km, amax., and ρmax. for different values of concrete and steel 

strengths when ϵt = 0.005 which is the minimum strain recommended by the ACI 

Code for the tension controlled zone.   
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Table (4.2) Maximum constants for ϵt = 0.004 ( 817.0= ) 

 

fy (MPa) 276 345 400 520 

fc
' kn km a/d 100ρ 100ρ 100ρ 100ρ 

20 5.06 4.14 0.36 2.24 1.80 1.55 1.19 

25 6.33 5.17 0.36 2.80 2.24 1.94 1.49 

30 7.50 6.12 0.36 3.31 2.65 2.28 1.76 

35 8.45 6.90 0.34 3.70 2.95 2.55 1.96 

40 9.30 7.60 0.33 4.03 3.22 2.78 2.14 
 

 

Table (4.3) Maximum constants for ϵt = 0.005 ( 9.0= ) 

 

fy (MPa) 276 345 400 520 

fc
' kn km a/d 100ρ 100ρ 100ρ 100ρ 

20 4.56 4.10 0.32 1.96 1.57 1.35 1.04 

25 5.69 5.12 0.32 2.45 1.96 1.69 1.30 

30 6.74 6.06 0.31 2.89 2.32 2.00 1.54 

35 7.58 6.82 0.30 3.23 2.58 2.23 1.71 

40 8.34 7.50 0.29 3.52 2.82 2.43 1.87 
 

4.6. Minimum Reinforcement Ratio according to the ACI Code 

 

When the area of steel is small due to small value of the external bending 

moment or the cross-section is larger than necessary, it is possible that the 

concrete resistance to the tensile stresses is more than that of the tension steel. In 

other words, the cracking moment Mcr > Mn. This mean that the structural 

member will lose its strength once cracking occurs. To prevent such failure, the 

ACI Code put a minimum limit of the reinforcement ratio unless the provided 

reinforcement area exceeds the required by 33%. The minimum reinforcement 

ratio is derived by assuming that the resultant of the tensile stresses at the 

cracking stage is carried out by the tension steel (ρminb.d ):                                                             

yy

c

ff

f 4.1

4

'

.min =                                                                                             (4.13a) 

When the flange of a T beam under tension, the minimum reinforcement area 

equal to whatever is greater from the equations below: 

db
f

db
f

f
A w

y

w

y

c

s )2(
4.1

)2(
4

'

.min
=                                                                       (4.13b) 

 db
f

db
f

f
A

yy

c

s )(
4.1

)(
4

'

.min
=                                                                             (4.13c) 
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For slabs and foundation of constant thickness, the minimum reinforcement area 

is that of shrinkage and temperature, according to ACI (24.4.3.2): 

 

(a) When fy < 400 MPa    and for deformed bars                          ρg,min. =0.002   

 

(b) When When fy ≥ 400 MPa    deformed bars and welded wire fabrics   

     (smooth or deformed)                                ρg,min. = 0.0018(400/fy) ≥ 0.0014                                        

                                                                          
The minimum reinforcement area is calculated with respect to the gross area: 

 
hbA gs ..min,min, =                                                                                                (4.14) 

 

 The maximum spacing for shrinkage and temperature reinforcement should not   

exceed 5 times the slab thickness or 450 mm. 

 

4.7 Flexural Analysis of Reinforced Concrete Sections 
When analyzing any reinforced section subjected to bending moment, the 

following steps must be followed: 

i. Compare ρactual with ρmin., if  ρactual  ≥  ρmin, proceed to the next step, if  

ρactual  <  ρmin , multiply the provided As by (3/4) and proceed to the next 

step, (in slabs, the provided area of steel should not be less that required 

for temperature and shrinkage). 

ii. Compare ρactual with ρmax., if  ρactual  ≤  ρmax, proceed to the next step, if not 

(ρactual  >  ρmax) assume As = ρmax(b.d) and proceed to the next steps. 

  
4.8 Analysis of Single Reinforced Rectangular Sections 

 

When any reinforced concrete section reach its flexural strength, the strain and 

stress distribution are as shown in Figure (4.5), the stress resultant in tension 

equal to: 

ys fAT .=                                                                                  (4.15) 

The stress resultant in compression equal to: 
bafC c .85.0 '=                                                                            (4.16) 

By equating the tensile and compressive forces (C and T, ysc fAbaf =.85.0 ' ), 

the value of (a) can be found: 

)85.0/( 'bffAa cys=                                                               (4.17) 
the lever arm (between C and T) z equal to: 

2/adz −=                                                                            (4.18) 

The internal moment (nominal flexural strength) Mn of the section equal to: 

zTzCM n .. ==                                                                                       (4.19) 
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4.8.1 Under- Reinforced Beams (Tension Failure) 

 

When ρact. ≤ ρb or  ρmax. the tension steel will reach yielding (fs ≥ fy ) before  

crushing of concrete. The stress resultant in tension (T=As×fy). Increase in the 

external loads will result in extension and elongation of the tension steel and 

increase in deflection and cracks width, decrease in the depth of the compression 

area, increase in the compression strain. The strength of the crosss-section is 

attained when the compression strain reaches a value of 0.003. At this stage, the 

the compression force equal to (C=0.85fc
’a×b). 

Using the equation of equilibrium in the horizontal direction (∑Fx =0): 

 

C = T 

)85.0/( 'bffAa cys=  

 2/adz −=  

)2/(.85.0)2/(. ' adbafadfAM cysn −=−=  

By substituting, )85.0/( 'bffAa cys= andin the above equation, the  dbAs ..=   
equation becomes:                                                                                     

                                                                                                                       
)59.01(... 2'  −= dbfM cn                                                                          (4.20) 

Where '/ cy ff = . 
EXAMPLE (4.1) 

A single reinforced concrete rectangular beam with b= 300 mm, h = 450 mm, 

d=390 mm, As = 4#20 = 1256 mm2. If f c
' = 20 MPa and f y = 276 MPa. Find the 

design flexural strength φMn. 

SOLUTION 

The actual reinforcement ratio ρact. equal to 
0107.0

390300

1256

.
=


==

db

As
act                     

The minimum reinforcement ratio ρmin. equal to: 

  
005.0

276

4.14.1
min ===

yf
  

004.0
2764

20

4

'

min =


==
y

c

f

f
  

Therefore ρmin =0.005 < ρact. (O.K.). 

From Tables (4.2) ρmax =0.0224 ( ϵt =0.004) and from Table (4.3) ρmax. =0.0196 

(ϵt =0.005), therefore the beam is under reinforced and ϵt > 0.005. 

b = 300 mm 
h

 =
 4

5
0

 m
m

 

d
 =

 3
9

0
 m

m
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mm
bf

fA
a

c

ys
68

3002085.0

2761256

.85.0

.

'
=




==  < mma 12539032.0max ==  

When calculating (a), use either m or mm so that the units are consistent, 

mmm
bf

fA
a

c

ys
68068.0

30.02085.0

276101256

.85.0

. 6

'
==




==

−

  

mmadz 3562/683902/ =−=−=  
mkNmMNzfAM ysn .4.123.1234.0356.0276101256.. 6 ==== −  

Since aa .max  and .max act  , therefore t005.0  (tension controlled) and 

9.0= . The value of ϵt can be calculated from the strain triangles after finding 

the value of c: 
mmac 8085.0/68/ 1 ===   

005.0011625.0003.0
80

80390
003.0 =

−
=

−
=

c

cd
t , that is 9.0= ; 

mkNM n .1.1114.1239.0 ==  

The value of nM  can be calculated in another way, by finding '/ cy ff =   
using equation (4.20): 

148.020/2760107.0/ ' === cy ff  

mMNM n .1233.0)148.059.01(148.0)39.0(3.020 2 =−=                                                   

 
4.8.2 Analysis of Over- Reinforced Beams (Compression Failure) 

When the area of tension steel is relatively large, the concrete in compression 

may reach its strength before yielding of steel. In such case the depth of the 

neutral axis is relatively large resulting in large compression force (C) to 

equalize the large tension force (T). The section will fail when the strain in 

compression reaches a value of 0.003, failure in such cases is brittle without 

visual warnings such as large deflection and wide cracks since ys ff  .  

The stress in the tension steel can be found in terms of the neutral axis depth, 

from similar strain triangles:  

ccd

s 003.0
=

−

     003.0
c

cd
s

−
=    

From the equilibrium equation (C=T): 

sssssc A
c

cd
A

c

cd
AEbcf

−
=

−
== 600003.0200000...185.0 '   

By substituting dbAs ..=  and dkc u .= , the above equation becomes: 

                                                                                (4.21)                      
where m equal to: 

0...2 =−+  mkmk uu
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1.85.0

600

' cf
m =  

Solving equation (4.21) for ku: 

2/.)2/.(. 2  mmmku −+=                                                                 (4.22) 

  After that find the value of c = ku.d, a = β1×c, and fs as follow   

c

cd
fs

)(
600

−
=  

The nominal flexural strength equal to: 

)2/(.)2/(..85.0 ' adfAadbafM sscn −=−=  

It is not possible to use the equation )2/(. adfAM ysn −=  to calculate Mn, 

since fs < fy. 

EXAMPLE 4.2 

Recalculate the design flexural strength of the beam of example (4.1) if As = 

5000 mm2. 

SOLUTION 

The reinforcement ratio  equal to 

005.00427.0
390300

5000
.min ==


=                    (O.K.)                    

Refer to Table (4.2) , this means that the 0359.0=b and > 0224.0max =    
section is over reinforced and failure will be in compression.  

5225.41
85.02085.0

600
=


=m  

773.10427.0225.41. ==m  
713.02/773.1)2/773.1(773.1 2 =−+=uk  

mmc 278390713.0 ==  
mmamma b 22723627885.0 ===  

MPafMPaf ys 276242600
278

278390
==

−
= 

002.0001209.0003.0
278

278390
=

−
=s  

The section is in the compression controlled zone and 65.0=  

mkNmMNM n .4.327.3274.0)2/236.039.0(3.0236.02085.0 ==−=                      
mkNM n .8.2124.32765.0 ==  

The following table can be used to find the value of ku and fs against the value of  
.m  
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Table (4.4) Values of  ku and fs  against .m  
4.0 3.5 3.0 2.5 2.0 1.5 1.25 1.0 .m 

0.828 0.812 0.791 0.766 0.732 0.686 0.686 0.618 
uk 

124 139 158 184 220 274 315 371 
sf 

 

The above steps give exact values for the neutral axis depth and the design 

flexural strength. The ACI Code recommends that 0224.0max ==  to ensure 

ductile failure. The solution of Example (4.2) is as follow: 

.max = and mmdaa 14039036.036.0max ====  

mkNmMN

adfAadbafM sscn

.5.228.2285.0)2/14.039.0(3.0140.02085.0

)2/(.)2/(.85.0 .max.max.max
'

==−=

−=−=
 

Or the value of MPakn 06.5.max =  to calculate Mn  

EXAMPLE 4.3 

Recalculate the design flexural strength of the beam of example (4.2) according 

to the ACI recommendation. 

SOLUTION 

The maximum area of steel that can be used in this case so that (fs=fy) according 

to the ACI recommendation 2

max 26210224.0300390. mmbdAMax s ===   

The maximum design flexural strength equal to: 

       mkNdbkM mn .9.18839.03.014.4.. 22 === 
 

4.8.3 Analysis of One- Way Slabs 

 

The one way slab is a slab supported on two opposite sides or a slab with length 

to width ratio ≥ 2.0. The load in such cases is transferred in the span direction or 

the short direction in case the slab is supported on four sides. The behavior of 

the slab is such case is similar to that of beams. For the sake of analysis a strip 

of 1.0 m wide is considered as a beam and the equivalent reinforcement in this 

strip is calculated. 

EXAMPLE 4.4 

 

A one way simply supported reinforced concrete slab has overall thickness of 

150 mm, c/c span = 3.5 m, and reinforced in tension with 12 mm bars on 150 

mm c/c. the slab is subjected to a finishing dead load of 2 kPa (in addition to its 

self-weight) and a live load of 3.5 kPa. Show whether the slab can resist the 

ultimate load. fc
'=20 MPa and fy=276 MPa. 
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SOLUTION 

 

i. Required strength = External ultimate bending moment 

Calculate the weight of 1.0 m2 of the slab as a dead load: 

kPa6.32415.011 =  

Ultimate Loads  or Factored Loads  
kPaLLDLwu 32.12)5.3(6.1)26.3(2.16.12.1 =++=+=  

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Maximum external bending moment Mu 

mmkNMu /.87.188/)5.3(32.12 2 ==  

ii. Design flexural strength φMn: 

Area of one bar with diameter of 12 mm = 113 mm2 with a spacing of 150 mm, 

Area of reinforcement (As) in a strip 1.0 m width = (1000/150)×113= 753 

mm2/m: 

002.0.005.0
1501000

753

.
==


== g

s
g Min

hb

A
    (O.K.) 

g is calculated on the basis of the gross-section (b.h) 

b=1.0 m 

d # 12 

1
2

4
 m

m
 

1
5

0
 m

m
 

150  150  150  150  

Figure (4.5) Example (4.4) (a) cross-section of the slab, (b) one 

meter strip 

(a) (b) 

b=1.0m 

 

3.3m 200mm 200mm 

150mm 



 14 

mmderclearhd b 1242/12201502/)cov( =−−=−−=  
 0196.0006.0

1241000

753
.max ==


=   (therefore the section is under 

reinforced) 

 

mma 12
10002085.0

276753
=




= ،  mmz 1182/12124 =−=   

mMNzfAM ysn .0221.0118.0276107539.0..9.0 6 === − 
            mkNmkN .87.18.1.22 =  

Therefore the slab can resist the ultimate load. 

 
4.9 Analysis of Doubly Reinforced Rectangular Beams 

 

In some cases, the size of the beam is limited due to its position in a specific 

place or due to aesthetic requirements. If the required flexural strength is more 

than the maximum flexural strength, an increase in the flexural strength in this 

case is necessary. This can be accomplished by using extra steel in tension and 

in compression. The steel in the compression zone is used for three purpose: 

i. Increase in the flexural strength together with additional tension steel, 

ii. Decrease of the long term deflection due to creep and shrinkage of 

concrete,   

iii. Stirrups hanger, and 

iv. In beams subjected to moment reversal. 

The method of analysis is similar to that of single reinforced sections, with 

the compression force divided into two parts, the first one is that of the 

concrete of area (a×b) and the second in the compression steel. The stress in 

the compression steel may or may not reach yielding when the section attains 

its strength depending the neutral axis depth and the area of the tension and 

compression steel. The stress in the compression steel is calculated from the 

strain triangles at failure.   

 

The flexural strength Mn assumed to be composed of two parts, Mn1and Mn2, 

Figure (4.6). The forces creating 1nM are that in the tension steel (T1=As1×fy) and 

that in the concrete in compression (C1=0.85fc
’a×b). The forces creating 2nM are 

that in the tension steel (T2=As2×fy) and that in the compression steel  [C2=As
’ 

(fs
’- 0.85fc)].  

The ACI Code limits max1.1 )/(  = dbAs for double reinforced sections as that 

for single reinforced section. The area As2 that equalize or neutralize As
’ is not 

controlled by this limitation. 
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To check whether the compression steel reaches yielding or not, refer to Figure 

(4.7) and from the similar strain triangles compute the value of c:  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

  Solving for c: 

    
        

                               (4.23) 
 

Using the equilibrium equation 11 ct NN = to derive the least tension 

reinforcement (
'

.lim ) ratio that ensure yielding of the compression steel when 

the section attains its strength. 

yssc fAAbcf )(..185.0 '' −=                                                                          (4.24) 

Substituting dbAs ..'

.lim= , dbAs ..'' = , and C from equation (4.23) and 

syy Ef /= in the above equation, the value of 
'

.lim become: 

 
'

''

'

.lim
600

600
185.0  +

−
=

yy

c

fd

d

f

f
                                                                    (4.25) 

If  '

.lim , the compression steel will reach yielding. Table (4.5) shows the 

depth that ensure yielding of the compression steel 

'

' )(003.0

dcc

ys

−
=



d` 

 2n+ M 1 nM= n M 

Design Moment 

n=ΦM 

sA 

As
' 

yf 2sA = 2T 
2sA 

As
' 

d-d` 

C2 = As
' fs

'' 

As2 = As
' 

) d`-(d yf ś= A n2M 

+ 

1T =1 C 

yf  s1A = 1T  

s2A-s = A s1A 

t1 =N c1a to make N 

i.e., a=As1 fy / (0.85 fć  b) 

Mn1= As1  fy (d-a/2) 

 

s1A 

d 

b 

a 
a/2 

d-a/2 

 
0.85 fć 

Analysis of Double Reinforced Sections Figure (4.6) 

'

003.0

003.0
dc

y−
=
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Table (4.5) Minimum depth of beams to ensure yielding of compression steel 

 

ϵt =0.005 ϵt =0.004 yf 

Min. d Min. d  
d' = 63 mm Max. d’/d d' = 63 mm Max. d’/d  

310 0.203 275 0.231 276 

395 0.159 345 0.182 345 

505 0.125 440 0.143 400 

1260 0.050 1105 0.057 520 

 

The maximum reinforcement ratio to ensure tension failure equal to: 

  
'

.max
'

.max  +=                                                                                     (4.26) 

In some cases, the compression steel may not reach yielding when the section 

attains its strength, like beams with shallow depth or when 
'

.lim.  act , the stress 

Figure (4.8) Stain distribution in a balanced 

double reinforced concrete section   
 

0.003 

εś 

 

εś 

d 

 

Figure (4.7) Strain distribution in the compression 

zone when the compression steel yield   

C
=

(0
.0

0
3

 /
 0

.0
0

3
-ε

y 
) 

d
` 

ϵs
’= ϵy 

d`-c 

d` 
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in the compression steel can be calculated from the strain triangles , Figure (4.8) 

above, if the section is in a balanced strain condition: 
                             
 Or 

 

 

)003.0(003.0
'

'
ys

d

d
 +=  

The balanced reinforcement ratio '
b equal to: 

y

s
bb

f

f '
''  +=  

Where '
sf equal to:  














+−= )003.0(003.0

'
'

yss
d

d
Ef   

The maximum reinforcement ratio equal to: 

 
                                                                (4.27) 

The value of fs
’ can be calculated also from the strain tringles in the compression 

zone: 

c

dc

c

dc
Ef ss

''
' 600003.0

−
=

−
= 

From the equilibrium equation T= C1+C2 

 
                                               (4.28) 

 

Substituting fs
’ in the above equation becomes a second degree equation in terms 

of c. after calculating the value of c, the values of a and fs
’ can be calculated as 

follow:                                                                                                                                                                                                                                                                             

)(.)2/(..85.0 '''' ddfAadbafM sscn −+−=                                                   (4.29) 

The ACI Code recommends that transverse steel should be provided (stirrups or 

equivalent welded wire fabric) in places where there is a compression steel to 

avoid bucking of the compression steel. 
 

EXAMPLE (4.5) 

 

A rectangular section with b =350 mm, d =680 mm, reinforced in tension with 6 

bars #28(As =3696 mm2), two bars # 25 in compression (As
’=982 mm2), d’=63 

'

'

003.0
syy

ddd

 +

−
=

+

ys ff /''

.max

'

.max  +=

yscssc fAffAbcf .)85.0(...85.0 '''
1

' =−+
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mm from the compression face. MPafc 20' =  and MPaf y 400=  . Calculate the 

nominal and design flexural strength for the section with and without 

compression steel. 

 

SOLUTION 

Calculate 
'

.lim from Equation (4.25), to check whether the compression steel 

will reach yielding or not: 

     

0155.0
680350

3696
=


= 

00413.0
680350

982' =


=  

0155.00142.000413.0
400600

600

680

63

400

20
85.085.0'

.lim ==+
−

=   

Therefore the compression steel will reach yielding. Compare   with '

.max to 

check whether it is under (T.F.) or over reinforced (C.F.): 

0155.001763.000413.00135.0'

.max

'

.max ==+=+=   
therefore the beam is under reinforced, 0135.0max = is taken from Table (4.3) for 

005.0t and 9.0=  

MNC

aaC

MNfAT ys

376.0)2085.0400(10982

95.535.02085.0

478.1400103696.

6
2

1

6

=−=

==

===

−

−

 

mmammma 21868032.0185185.0
95.5

376.0478.1
.max ====

−
=  

mmc 21885.0/185 == 
005.00064.0)003.0(

218

218680
=

−
=t    ,    9.0=  

mMNM n .6467.0)2/185.068.0(35.0185.02085.01 =−=  

mMNM n .226.0)063.068.0)(2085.0400(10982 6
2 =−−= −

 

mkNM

mkNM

n

n

.4.7857.8729.0

.7.8722267.646

==

=+=


 

If the compression steel is omitted 0135.00155.0 max ==  for ( 005.0=t ), but 

for 004.0=t  , 0155.0max = , the nominal and design flexural strength equal to: 

mkNdbkM nn .9.81868.035.006.5. 22

max, ===  

mkNdbkM mn .67068.035.014.4. 22

max, ===  
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The values of kn, max and km,max are taken from Table (4.2) for ( 004.0=t ) and 

φ=0.817. 

The increase in the nominal flexural strength with the compression steel equal 

to: 

%6.6
9.818

9.8187.872
=

−
 

While the total area of steel (tension and compression) is increased by 26.6%, 

this shows that providing compression steel only will not increase the design 

flexural strength in the same proportion, but additional tension steel must be 

provided also.  

 

EXAMPLE (4.6) 

 

Resolve Example (4.5) if MPaf c 30' =  . 

SOLUTION 

Calculate 
'

.lim from Equation (4.25) to check whether the compression steel 

will reach yielding or not: 

0155.00189.000413.0
400600

600

680

63

400

30
836.085.0'

.lim ==+
−

=   

Therefore the compression steel will not reach yielding when the section attains 

its strength, Equation (4.28) to find the value of c: 

 

4001036963085.0
063.0

6001098235.0)(836.03085.0 66 =







−

−
+ −−

c

c
c 

000498.01225.02 =−− cc 
mmammammc 21168031.0130155836.0,155 .max ===== 

This means that the section is under reinforced and 005.0t and 9.0= . The 

value of a is less than that of the example (4.5) because of the increase in '

cf .   

MPafMPaf ys 4001.356
155

63155
600' ==

−
= 

 =+= 0237.0
400

1.356
00413.002.0'

.max  

Which mean that the section is under reinforced as mentioned previously. 

mMNM n .7136.0)2/130.068.0(35.0130.03085.01 =−= 
mMNM n .2003.0)063.068.0)(2085.01.356(10982 6

2 =−−= − 

mkNM

mkNM

n

n

.5.8229.9139.0

.9.9133.2006.713

==

=+=


 
If the compression steel is removed, mkNM n .9.882= . The increase in the 

nominal flexural strength in the presence of compression steel equal to: 
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%5.3
9.882

9.8829.913
=

−
 

This mean, that adding compression steel only will not increase the flexural 

strength significantly, but additional tension and compression steel must be 

provided. 

Comparing the results of this example with the previous one, shows that 

increasing fc
' by 50% from (20 to 30 MPa), increased the nominal flexural 

strength by 4.7% and 7.8 % for the double and single reinforced sections 

respectively. The compression strength of concrete doesn't have great influence 

on the flexural strength of beams like slabs and beams, but in columns it have a 

great influence especially those failing in compression. 

 

4.10 Analysis of T-Beams 

 

In constructing slabs and roofs, the beams and slabs are cast together, and if it is 

cast separately (as in bridges) they are bonded together (by shear connectors). 

The stirrups and top bars of the beams are extended to the slabs, and the slabs 

top and bottom reinforcement are extended to the beam and therefore both 

become one unit as a T-shape, Figure (4.9). The slab part is called flange and the 

lower part called web or (stem). When the beam is subjected to positive bending 

moment (compression at the top and tension at the bottom) part of the slab 

adjacent to the beam will be subjected to compression stresses to balance the 

tensile force in the web. These compression stresses will decrease with the 

distance from the web, Figure (4.9). At the ultimate stage, the distribution of the 

longitudinal compression stresses becomes more uniform.  

 

For beams with slabs on both sides, the ACI code recommends that the width of 

the beam flange is the smaller of the following: 

i. Span / 4, 

ii. 16hf + bw, and 

iii. Web width + the clear distance to the next beam (Center to center of the 

beams). 

 

For beams with slab on one side (edge beams), the width of effective slab that is 

part of the beam, is the smaller of the following: 

i. Six times the slab thickness (6hf), 

ii. Span / 12, and 

iii. Half the clear distance to the next beam.  

 

If the beam is subjected to negative bending moment (tension at the top and 

compression at the bottom) the beam is designed as a rectangular beam with 

dimensions (bw.d).   
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Depending on the beam and slab dimensions, tension steel area, and the 

compression strength of concrete, there are three possible locations of the depth 

of the stress block (a):  

 
 
 
 
 
 
 
 

  

  

 Figure (4.9) Distribution of the compression stresses on the flange 

 
i. In the flange (a < hf), and the beam is considered as a rectangular beam 

with dimensions (b×d), 

ii. Equal to the flange thickness (a = hf) and the beam is considered as a 

rectangular beam with dimensions (b×d) or, 

iii. Below the bottom of the flange (a > hf) and the beam is considered as a T 

beam.   

 

In the third case, the tension steel is divided into two parts, one equalizing the 

compression force in the two wings of the flange (Asf), and the other equalizing 

the compression force in the web (Asw), Figure (4.10) and computed as follow: 

 

                                                                     (4.30a) 

    
                                                         (4.30b)   

  

                                                                                        (4.31a)                                                                        

 

wcysw baffA ..85.0. '=                                                                                   (4.31b) 

                                                           (4.31c) 
the total nominal flexural strength equal to: 

                                                                        21 nnn MMM +=   (4.32) 

To ensure a tension failure, the reinforcement ratio should be limited as for 

rectangular beam: 

)(.85.0. '
wfcysf

bbhffA −=

)2/(.1 fysfn hdfAM −=

sfssw AAA −=

)2/(.2 adfAM yswn −=

cf 

h 
sA 

wb 

fh 

web 
sA 

d 

Flange flange 

Web 
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.max,
.

w
w

s
w

db

A
 =   

fw  += .maxmax,                                                                                             (4.33) 

db

A

w

sf

f =                                                                                                         (4.34) 

 
 
 
 
 
 

wc

ysfs

bf

fAA
a

'85.0

)( −
=                                                                              

)2/()(2 adfAAM ysfsn −−= 
 
 

.max is calculated as for single reinforced rectangular beam. The reinforcement 

ratio ( w ) should be compared also with the minimum reinforcement ratio 

( .min (. 
 

EXAMPLE (4.7) 

 

A reinforced concrete floor composed of continuous slab supported on parallel 

beams spaced 3.0 m on centers and 6.0m span. MPaf c 20' =  and MPaf y 400= . 

The beams are reinforced in tension with six bars 35 mm diameter (5772 mm2). 

Calculate the design flexural strength of an intermediate beam. 

 
  

 
 
 
 

 

 

 wsA 

a  

 wb 

+  =   fsA 

 wb 

 fh 

eff b 

)2(1

)(85.0

fhdsfAnM

yf

fhwbbcf
sfA

−=

−
=

Figure (4.10) Calculation of the flexural strength of a T section 

2.7m 2.7m 

6
0

0
 m

m
 

300mm 300mm 

hf=150 mm 

Figure (4.11) Beam slab system of Example (4.7) 
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SOLUTION 

The effective width of the flange equal to: 

mmspanb 15004/60004/ == 
mmhbb fw 27001501630016 =+=+ 

distance between beams=3000mmccb / 
therefore, b =1500 mm 

226 76501065.7
400

)3.05.1(15.02085.0
mmmAsf ==

−
= − 

0425.0
600300

7650

.
=


==

db

A

w

sf
f  

032.0
600300

5772

.

5772
=


==

dbw
w  

032.0056.00425.00135.0.max.max, ==+=+= wfw   
The value of .max is taken from Table (4.3), 005.0=t and 9.0= . If 

.max,ww   the value of .max can be taken from Table (4.2) and substituted in 

the above equation. If w still > .max,w the section is either in the transition or the 

compression controlled zone. 

Therefore the section is under reinforced. To check the value of (a), calculate T 

and Cf : 

MNfAN yst 309.2400105772. 6 === −  

tfccf NMNhbfN === 825.315.05.12085.0.85.0 '  

Therefore a < hf, the section is considered as a rectangular section with 

dimensions (b.d = 1500×600 mm): 

mmma 9009.0
5.12085.0

309.2
==


= 

mkNM

mMNadNM

n

tn

.115312819.0

.281.1)2/09.06.0(309.2)2/(

==

=−=−=


 

 

EXAMPLE (4.8) 

 

Calculate the design flexural strength for the edge beam of Example (4.7). 
 

SOLUTION 

 

Calculate the value of the effective flange width b: 
mmspanbb w 80012/600030012/ =+=+ 

mmhbb fw 120015063006 =+=+ 
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2

1
+ wbb=1650mm= 300 +2700/2  clear distance between beams 

 therefore b = 800 mm 
226 318810188.3

400

)3.08.0(15.02085.0
mmmAsf ==

−
= − 

0177.0
600300

3188

.
=


==

db

A

w

sf
f  

032.0
600300

5772

.

5772
=


==

dbw
w  

032.00312.00177.00135.0.max.max, ==+=+= wfw   

From Table (4.3) for 005.0=t , 0155.0.max =  

32.00332.00177.00155.0.max.max, ==+=+= wfw   

That is 004.0005.0  t , 

Check the location of the depth of the stress block (a); 

MNfAT ys 309.2400105772. 6 === −  
tfcf TMNhbfC === 045.215.08.02085.0.85.0 '  

Therefor a > hf, and the beam is considered as a T beam and divided into two 

sections: 

mMNhdfAM fysfn .6695.0)2/15.06.0(40010188.3)2/( 6
1 =−=−= −

2258431885772 mmAAA sfssw =−=−= 

mm
bf

fA
a

wc

ysw
203

3002085.0

4002584

.85.0

.

'
=




== 

861.0)250(
3

002.0
65.0

00453.0)003.0(
239

239600

23985.0/203

=
−

+=

=
−

=

==

t

t

mmc




 

mMNM n .5152.0)2/203.06.0(102584 6
2 =−= − 

mkNM n .1020)2.5155.669(861.0 =+=  

 

 4.11 Analysis of Special Beam Shapes 

 

Special shapes mean shapes other than rectangular or T shapes. The method of 

analyzing these sections is the same as that for T shapes, and can be summarized 

as follow: 
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i. Calculate the tensile force ys fAT .=  , which should be equalized by a 

compression force C, 

ii. The compression force C = '85.0 cf (Ac = area under compression) which 

is not rectangular, from this area the value of (a) can be found, 

iii. Calculate the centroid of this area (yc) by taking the moment of areas 

about the compression face, 

iv. The lever arm z = d – yc, 

v. The nominal flexural strength zCzTM n .. ==  

vi. Check the values of c, t , and  . 
EXAMPLE 4.9 

 

Calculate the design flexural strength for the   

section in Figure (4.12).  2196425#4 mmAs ==  

MPaf c 30' =  and MPaf y 400= . 

 
                                    

SOLUTION 

0035.0400/4.1.min ==  

00342.0)4004/(30.min ==  

Therefore 0035.0.min =  

.min0091.0)540400/(1964  ==w    (O.K.) 

MNT 7856.0400001964.0 ==  
22 308080308078.0)3085.0/(7856.0 mmmAc ===  

Area of the two parts in the compression zone  = 2×150×100= 30000mm2 < Ac 

Therefore a > 100 

30808 = 30000 + 400 (a-100) 

a = 102 mm 
836.0)2830(00725.085.01 =−−=  

mmc 122836.0/102 ==  

005.001027.0003.0
122

122540
003.0 =

−
=

−
=

c

cd
t  

Therefore 9.0=  

mmyc 51
30808

5010010051102400
=

−
=  

mmydz c 48951540 =−=−=  

mkNmMNM n .6.381.3816.0489.07856.0 ===  

mkNM n .7.3456.3819.0 ==  

150 150 

100 

5
4

0
m

m
 

1
0

0
 

Figure (4.12) Example (4.9) 
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Chapter Five 

Strength Design for Flexure 
5.1 Introduction 

 

In chapter four, analysis of various reinforced concrete sections were discussed 

using the strength design method. In all cases, the dimensions of the cross-

section, area of steel, and materials strength fc
' and fy are given or known and the 

design flexural strength (φMn) is required. 

In this chapter, the strength design for flexure will be discussed. The loads 

(Ultimate loads), required moments (Ultimate moments), and materials strength 

are given or known and the required information are part or all of the cross-

section dimensions and the area of steel. 

 

5.2 Design of Single Reinforced Rectangular Sections 

 

The design of rectangular sections may include determining the dimensions b or 

d or both of them and the area of steel. The dimensions and area of steel 

determine the mode of failure. Compression failure may be dangerous because it 

is brittle and occur suddenly without visual warnings. While tension failure, 

gives visual warnings like large deflection and wide cracks. To ensure such 

failure, the reinforcement ratio should not exceed .max which is less than the 

balanced reinforcement ratio ρb. The reinforcement ratio also, should be more 

than the minimum reinforcement ratio ρmin. , so that the section will not lose its 

strength at cracking unless the area of steel provided is (4/3) of that required.  

There are many sections that satisfy this requirement (ρmin. ≤ ρ ≤ ρmax.) . If it is 

required to use small concrete section it means that .max  but such sections 

are not economical because of the relatively large area of steel and the 

probability of large deflection. It is possible to use Table (5.1) to find the 

minimum depth for beams and one-way slabs:   

 

Table (5.1) Minimum Depth of non-Prestressed beams and one-way slabs unless 

deflection is computed 
Minimum thickness h  

Cantilever Both ends 

continuous 

One end 

continuous 

Simply 

supported 

 

Members not supporting or attached to partitions or other 

construction likely to be effected by large deflection 

Member  

L/10 L/28 L/24 L/20 Solid one-way slabs 

L/8 L/21 L/18.5 L/16 Beams or ribbed one-

way slabs 

Notes : 

The values in the above table are for cast in place normal concrete and fy = 400 MPa. For 

other cases, the values should be multiplied by the following factors: 

S. A. Al-Ta'an 
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a- For lightweight concrete with density between (1440 to 1920 kg/m3) multiply by   

(1.65-0.0003wc) ≥ 1.09 

b- For fy ≠ 400 MPa, multiply by )689/42.0( yf+ . 

At the beginning calculate the required Mn ≥ Mu / ɸ, Mu required external 

flexural strength, and ɸ = strength reduction factor = 0.65 – 0.9, depending on 

the value ϵt. If: 

Max.Mn = max. knbd2 > required Mn  

(the beam is single under reinforced, and  ρ ≤  ρmax), and if: 

 Max.Mn = max. knbd2 < required Mn  

The beam is double reinforced. 

 

5.2.1Determination of the Tension Reinforcement 

 

If the dimensions of the cross-section are given or known, the following 

procedure is followed to find the necessary reinforcement area: 

i. From the equilibrium equation               

 

                                                                         (5.1)                                          
mdffda cy ..)85.0/(. '  ==                                                                                  (5.2) 

 Where  )85.0/( '

cy ffm =         

Using the moment equation:                          

)2/(.... adfdbzTM yn −==   
Substituting (a) from Equation (5.2), the equation becomes: 

 

                                                                (5.3)  
 

Substituting (m = fy /0.85fc
') and dividing both sides of equation (5.3) by (bd2), 

Equation (5.3) becomes:  

                                                              (5.4)                                                                       
 

Solving Equation (5.4) for the reinforcement ratio ρ: 

(5.5) 
 

 

 

It is possible to use Equation (4.20) in chapter four in the following form to 

calculate the reinforcement ratio 
)59.01()/( 2'  −=bdfM cn                                                                                   (5.6) 

 '/ cy ff =  

The following Table is a solution of the above Equation. 

 

yc fdbTbafC ....85.0 ' ===

)
85.02

..
(...

'

c

y

yn
f

df
dfdbM


−=




)2/1(.)/( 2 mfkbdM ynn  −==














−−=

y

n

f

mk

m

.2
11

1


S. A. Al-Ta'an 
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Table (5.2) Solution of Equation (5.6) 

'
c

y

f

f
 = 0.000   0.001   0.002   0.003   0.004   0.005   0.006   0.007   0.008   0.009          

)59.01()/( 2'  −=bdfM cn  

.00            .0000   .0010   .0020   .0030   .0040   .0050   .0060   .0070   .0080   .0090 

.01            .0099   .0109   .0119   .0129   .0139   .0149   .0159   .0168   .0178   .0188 

.02            .0197   .0207   .0217   .0226   .0236   .0246   .0256   .0266   .0275   .0285 

.03            .0295   .0304   .0314   .0324   .0333   .0343   .0352   .0362   .0372   .0381 

.04            .0391   .0400   .0410   .0419   .0429   .0438   .0448   .0457   .0466   .0476 

.05            .0485   .0495   .0504   .0513   .0523   .0532   .0541   .0551   .0560   .0569 

.06            .0579   .0588   .0597   .0607   .0616   .0625   .0634   .0643   .0653   .0662 

.07            .0671   .0680   .0689   .0699   .0708   .0717   .0726   .0735   .0744   .0753 

.08            .0762   .0771   .0780   .0789   .0798   .0807   .0816   .0825   .0834   .0843 

.09            .0852   .0861   .0807   .0879   .0888   .0897   .0906   .0915   .0923   .0932 

.10            .0941   .0950   .0959   .0967   .0976   .0985   .0994   .1002   .1011   .1020 

.11            .1029   .1037   .1046   .1055   .1063   .1072   .1081   .1089   .1098   .1106 

.12            .1115   .1124   .1133   .1141   .1149   .1158   .1166   .1175   .1183   .1192 

.13            .1200   .1209   .1217   .1226   .1234   .1243   .1251   .1259   .1268   .1276 

.14            .1284   .1293   .1301   .1309   .1318   .1326   .1334   .1342   .1351   .1359   

.15            .1367   .1375   .1384   .1392   .1400   .1408   .1416   .1425   .1433   .1441 

.16            .1449   .1457   .1465   .1473   .1481   .1489   .1497   .1506   .1514   .1522 

.17            .1529   .1537   .1545   .1553   .1561   .1569   .1577   .1585   .1593   .1601 

.18            .1609   .1617   .1624   .1632   .1640   .1648   .1656   .1664   .1671   .1679 

.19            .1687   .1695   .1703   .1710   .1718   .1726   .1733   .1741   .1749   .1756 

.20            .1764   .1772   .1779   .1787   .1794   .1802   .1810   .1817   .1825   .1832 

.21            .1840   .1847   .1855   .1862   .1870   .1877   .1885   .1892   .1900   .1907 

.22            .1914   .1922   .1929   .1937   .1944   .1951   .1959   .1966   .1973   .1981 

.23            .1988   .1995   .2002   .2010   .2017   .2024   .2031   .2039   .2046   .2053 

.24            .2060   .2067   .2075   .2082   .2089   .2096   .2103   .2110   .2117   .2124 

.25            .2131   .2138   .2145   .2152   .2159   .2166   .2173   .2180   .2187   .2194 

.26            .2201   .2208   .2215   .2222   .2229   .2236   .2243   .2249   .2256   .2263    

.27            .2270   .2277   .2284   .2290   .2297   .2304   .2311   .2317   .2324   .2331 

.28            .2337   .2344   .2351   .2357   .2364   .2371   .2377   .2384   .2391   .2397 

.29            .2404   .2410   .2417   .2423   .2430   .2437   .2443   .2450   .2456   .2463 

.30            .2469   .2475   .2482   .2488   .2495   .2501   .2508   .2514   .2520   .2527 

.31            .2533   .2539   .2546   .2552   .2558   .2565   .2571   .2577   .2583   .2590 

.32            .2596   .2602   .2608   .2614   .2621   .2627   .2633   .2639   .2645   .2651  

.33            .2657   .2664   .2670   .2676   .2682   .2688   .2694   .2700   .2706   .2712  

.34            .2718   .2724   .2730   .2736   .2742   .2748   .2754   .2760   .2766   .2771 

.35            .2777   .2783   .2789   .2795   .2801   .2807   .2812   .2818   .2824   .2830 

.36            .2835   .2841   .2847   .2853   .2858   .2864   .2870   .2875   .2881   .2887  

.37            .2892   .2898   .2904   .2909   .2915   .2920   .2926   .2931   .2937   .2943  

.38            .2948   .2954   .2959   .2965   .2970   .2975   .2981   .2986   .2992   .2997  

.39            .3003   .3008   .3013   .3019   .3024   .3029   .3035   .3040   .3045   .3051 

.40            .3056   .3061   .3067   .3072   .3077   .3082   .3087   .3093   .3098   .3103 
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Example (5.1) 

A reinforced concrete beam with b= 350 mm, and d = 540 mm is subjected to a 

factored moment of 450 kN.m. If MPaf c 25' =  and MPaf y 276= , calculate the 

necessary area of steel. 

Solution 

 To calculate the required nominal moment (Mn) the value of φ must be known 

or assume a certain mode of failure subjected to a later check. Assume φ = 0.9: 

 mkNM n .5009.0/450 =  

Referring to Table (4.3) to find the value of MPakMax n 69.5. = , the nominal 

maximum moment equal to: 

nn MmkNmMNMMax === .7.580.5807.054.035.069.5. 2 = 500 kN.m 

Therefore the section is single under reinforced ( .max  ) 

 

 
 

MPakMaxMPa
db

M
k n

n
n 69.5.9.4

54.035.0

5.0

. 22
==


==  

 
 

Using Table (5.1) to find   and then  : 

196.0
54.035.025

5.0

.. 22'
=


=

dbf

M

c

n 

'
226.0

c

y

f

f
 ==  , then  equal to 0205.0276/25226.0 == : 

The required area of steel equal to: 
238755403500205.0 mmAs ==  

To determine the number and diameter of bars, it is preferred to satisfy the 

following provisions: 

i. Arrange the bars symmetrical about the vertical axis,   

ii. Use at least two bars, one in each corner, 

iii. For beams with normal dimensions, use bars with diameter ≤ 35 mm 

starting with the small sizes,  

iv. Use no more than two diameters with one size difference to avoid 

mistakes during construction, e.g., (22, 28), (16, 20) and not (22, 35) or 

(12, 25), 

v. Arrange the bars in layer wherever possible, 

vi. Satisfy the provisions for bars spacing,  

99.12
2585.0

276

85.0 '
=


==

c

y

f

f
m

0245.00205.0
276

9.499.122
11

99.12

1
.max ==







 
−−= 
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vii. When using more than one layer of steel or more than one size of bars, put 

the larger sizes next to the tension face, and 

viii. In large beams and columns, sometimes it is necessary to put the bars in   

bundles (two, three, or four) as shown below. These bundles should be 

surrounded by stirrups or ties. 

 
 

 
Figure (5.1) arrangement of bars in bundles 

 

Referring to Table (5.3) for bars sizes and diameter, there are many choices, but 

it is preferable to start with small sizes because it is to transport, cut and shape it. 

Try 8#25= 3928 mm2 and put it into two layers as shown. 

 

 

                                    Figure (5.2) Arrangement of  

                                        bars for Example (5.1) 

 

or it is possible to choose 4# 28 in the bottom layer = 2646 mm2 and 4 # 22 = 

1520 mm2 in the layer above, the sum = 4166 mm2. 

Table (5.3) Area of group of bars 

Dia. Number of bars 

Mm 1 2 3 4 5 6 7 8 9 10 
10 79 158 237 316 395 474 553 632 711 790 

12 113 226 339 452 565 678 791 904 1017 1130 

16 201 402 603 804 1005 1206 1407 1608 1809 2010 

19 284 568 852 1136 1420 1704 1988 2272 2556 2840 

22 380 760 1140 1520 1900 2280 2660 3040 3420 3800 

25 491 982 1473 1964 2455 2946 3437 3928 4419 4910 

28 616 1232 1848 2464 3080 3696 4312 4928 5544 6160 

32 804 1608 2412 3216 4020 4824 5628 6432 7236 8040 

35 962 1924 2886 3848 4810 5772 6734 7696 8658 9620 

Bars #44 and 57 mm are used in columns and rarely used in beams. 

 

If the beam is not exposed to weather or in contact with soil, the reinforcement 

requires 40 mm clear cover. This cover protects the reinforcement from rusting, 

25#8 

5
4
0

m
m

 

350mm 
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fire, and integrates the bars with the other parts of the beam. The clear spacing 

between bars must be checked and should be not less than the following: 

i. 25 mm, 

ii. Bar diameter, and 

iii. (4/3) maximum aggregate size. 

 

Table (5.4) shows: 

i. The minimum width for different bar sizes using #10 mm stirrups, when 

using larger bar size the difference is added to the two sides,   

ii. Add the last figure in the last column for every additional bar, 

iii. If the diameters are different, the width is limited to the small bars and the  

difference in the last column is added to the large bars, and 

iv. Maximum coarse aggregate size should not exceed (3/4) clear spacing 

between bars. 

 
Table 20.6.1.3.1- Specified concrete cover for cast in-place nonprestressed            

concrete members 

Concrete exposure Member Reinforcement Specified cover 

Cast against and 

permanently in contact 

with ground 

All All 75 

Exposed to weather or in 

contact with ground 

All No. 19 through No. 57 50 

No. 16 bar, W31 or 

D31 wire, and smaller 

40 

Not exposed to weather or 

in contact with ground 

 

Slabs, joists, and 

walls 

No. 45 and No. 57 40 

No. 35 bar and smaller 20 

Beams, columns, 

pedestals, and 

tension ties 

Primary reinforcement, 

stirrups, ties, spirals, 

and hoops 

40 

 

Table (5.4) Minimum width for beams according to ACI 

Dia. Number of bars in single layer For each 

additional 

bar 
Mm 2 3 4 5 6 7 8 

12 177 214 251 288 325 362 399 37 

16 181 222 263 304 345 389 427 41 

19 184 228 272 316 360 404 448 44 

22 187 234 281 328 375 422 469 47 

25 190 240 290 340 390 440 490 50 

28 196 252 308 364 420 476 532 56 

32 204 268 332 396 460 524 588 64 

35 210 280 350 420 490 560 630 70 

44 232 320 408 496 584 672 760 88 

57 271 385 499 613 727 841 955 114 

S. A. Al-Ta'an 
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A = 40 mm (clear cover to the stirrups), 

B = 10 mm (diameter of stirrups), 

C = 20 mm for bars with diameter ≤ 35 mm, for bars with dia. 44 and 57 mm 

      C= db / 2 

D = clear distance between bars and equal to whichever is greater of the  

       following limits: 

i. 25 mm, 

ii. Bar diameter, 

iii. (4/3) of the maximum coarse aggregate size. 

 

 
 

Figure (5.3) Bars arrangement 

 

 

 

Table 20.6.1.3.1- Specified concrete cover for cast in-place nonprestressed concrete 

members 

Concrete exposure Member Reinforcement Specified cover 

Cast against and 

permanently in contact 

with ground 

All All 75 

Exposed to weather or in 

contact with ground 

All No. 19 through No. 

57 

50 

No. 16 bar, W31 or 

D31 wire, and 

smaller 

40 

Not exposed to weather or 

in contact with ground 

 

Slabs, joists, and 

walls 

No. 45 and No. 57 40 

No. 35 bar and 

smaller 

20 

Beams, columns, 

pedestals, and 

tension ties 

Primary, reinforce- 

ment, stirrups, ties, 

spirals, and hoops 

40 

 

 
5.2.2 Determination of Cross Section Dimensions and Steel Area 

When the cross-section dimensions and area of steel are unknown, the steps 

below may be followed: 

i. Assume a certain value for the reinforcement ratio )( .min.max   , 

ii. Calculate the shape factor kn from Equation (5.4) 

 )2/1(. mfk yn  −=

A 

B 

C D 
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iii. Calculate (bd2) from the following Equation: 

           nn kMdb /. 2 =  

iv. Choose a suitable dimensions for b and d, and usually b is fixed first and 

then d is calculated from (d = √bd2 /b). to the value of d add the clear 

cover, stirrup diameter, half bar diameter to get the value of h: 

               h = d + clear cover + stirrup diameter + db / 2. Refer to ACI Code  

               (20.6.1) for the concrete cover.  

v. The value of h then rounded to the nearest (25 or 50 mm), 

vi. Calculate a new value of d = h – clear cover – stirrup dia. – db / 2 

vii. Calculate a new value of kn: 

               
2bd

M
k n

n =  

viii. Calculate the value of ρ as shown in the previous section or from  

Equation )59.01()/( 2'  −=bdfM cn  , 


=

c

y

f

f.
 . 

Example (5.2) 

Find the dimensions b, h, d, and area of steel for a reinforced concrete 

rectangular beam to carry a factored (ultimate) mkNM u .360= . MPaf c 30' =  and 

MPaf y 400= . 

Solution 

Assume ɸ = 0.9 and it later on after determining the dimensions and area of 

steel. 

   

 
Choose a suitable value for ρ so that )( .min.max   , )0035.0020.0(    

For example try ρ = 0.012 (about 60% of ρmax.)  
69.15

3085.0

400
=


=m 

MPakMaxMPak nn 74.6.35.4)2/69.15012.01(400012.0 ==−=  
 

 

 

 

If b is assumed equal to 300 mm, then d equal to: 

 
to calculate h assume ds (diameter of stirrups) = 10 mm, clear concrete cover  = 

40 mm, and db (20 to 30 mm) 

mmh 6172/251040554 =+++= 

332 91954000091954.0
35.4

4.0
. mmm

k

M
db

n

n ====

mmd 554300/91954000 ==

mkNMn .4009.0/360 =

S. A. Al-Ta'an 
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This dimension is not practical, then use h = 600 or 650 mm, with h = 650 mm d  

will equal to: 

mmd 5872/251040650 =−−−=  recalculate kn since d is changed 
MPakn 87.3

587.03.0

4.0

2
=


=  

01055.0
400

69.1587.32
11

69.15

1
=







 
−−=  

Or use 


=
'

.

c

y

f

f
 after calculating 129.0

587.03.030

4.0

.. 22'
=


=

dbf

M

c

n   

From Table (5.2) 1405.0
.

=


=

c

y

f

f
 , 01054.0=  

2185858730001055.0 mm==  

Referring to Tables (5.3 and 5.4), use 4# 25 = 1964 mm2 , which requires 290 

mm width. 

 
   

 

 

 

  
Figure (5.4) Arrangement 

Of bars for Example (5.2) 

 

Example (5.3) 

A one-way slab is simply supported on an effective span of 4.0 m (c/c) and 

carries a working live load of 5.0 kPa, and a finishing DL of 2.0 kPa. 
MPaf c 20' =  and MPaf y 400= . Find the necessary thickness and area of steel. 

Solution 

To find the required thickness, refer to Table (5.2), the minimum thickness 

mm
span

h 200
20

4000

20
==  to avoid excessive deflection. Take a strip equal to 

1.0 width for the design sake. 

The ultimate load on the slab = kPawu 16.1656.1)8.42(2.1 =++=  

External factored (ultimate moment) equal to:  
mmkNMu /.32.328/)4(16.16 2 ==  

mmkNM n /.91.359.0/32.32 =  

The effective depth of the slab d = 200 -20 – db / 2 = 200 -20 – 12/2 =174 mm 

300mm  

6
5
0

m
m

 

5
8
7

m
m

 

4#25 
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mmkNMmmkNMMax nn /.91.35/.1.138)174.0(156.4. 2 ===  

The section is under reinforced 
.max   

53.23)2085.0/(400 ===m 

MPakn 19.1
174.01

03591.0

2
=


= 

00309.0
400

53.2319.12
11

53.23

1
=







 
−−=  

mmmAs /538174100000309.0 2==  

Referring to Table (5.5) for groups of bars in slabs,  

 

Table (5.5) Area of groups of Bars in Slabs one meter width 

db Spacing of bars (mm) 

50 75 100 125 150 175 200 225 250 275 300 

6 560 373 280 224 187 160 140 124 112 102 93 

8 1000 667 500 400 333 286 250 222 200 182 167 

10 1571 1047 785 628 523 449 393 349 314 285 262 

12 2260 1507 1130 904 753 646 565 502 452 411 377 

16 4020 2680 2010 1608 1340 1149 1005 893 804 731 670 

20 6280 4187 3140 2512 2093 1794 1570 1396 1256 1142 1047 

22 7600 5067 3800 3040 2533 2171 1900 1689 1520 1382 1267 

25 ---- 6547 4910 3928 3273 2806 2455 2182 1964 1785 1637 

28 ---- 8213 6160 4928 4107 3520 3080 2738 2464 2240 2059 

32 ---- 10720 8040 6432 5360 4594 4020 3573 3216 2924 2680 

35 ---- 12827 9620 7696 6413 5497 4810 4276 3848 3498 3207 

(#10@ 125 mm c/c = 628 mm2/m, or #12 @ 200mm c/c = 565 mm2/m). 

Or the spacing can be calculated manually as shown below: 

No. of bars = 538 / 113 = 4.76  

Sps. = 1000/ 4.76 = 210 mm 

Use 200 mm spacing c /c   

Provided As = (1000/200)113 = 565 mm2 / m 

0018.0.00283.0
2001000

565
==


= gg Min   

Since the slab is one-way (load transferred in the span direction) shrinkage and 

temperature steel must be provided in the perpendicular direction: 

 mmm /36020010000018.0 2=  

#10 bars every 200 mm c/c provide an area = (1000/200)79 = 395 mm2 as shown 

in the figure below. 

S. A. Al-Ta'an 
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Ribbed slabs 

Ribbed slabs is a slab with small ribs spaced uniformly and covered with a 

thin slab with thickness ranging between 50-75 mm. A ribbed slab must 

satisfy the following three limitations: 

i. Rib width bw  ≥ 100 mm, 

ii. Rib depth ≤ 3.5 bw, and  

iii. Clear spacing between ribs should not exceed 750 mm. 

A slab not satisfying the above three limitations has to be considered as a beam-

slab system.  

Example (5.4) 

Resolve Example (5.3) using one-way ribbed slab. 

Solution 

To find the required thickness, refer to Table (5.1), the minimum thickness 

mm
span

h 250
16

4000

16
==  to avoid excessive deflection.  

Self-weight of one rib / m = [0.2(0.1+0.13)/2]24 + 0.6×0.05×24 = 1.27 kN/m 

 

Self-weight / m2 = 1.27/0.6 = 2.12 kPa 

   

 

The ultimate load on the slab = kPawu 94.1256.1)12.22(2.1 =++=  

External factored (ultimate moment) equal to:  
mmkNM u /.88.258/)4(94.12 2 ==  

mmkNM n /.76.289.0/88.25 =  

The effective depth of the slab d = 250 -20 – db / 2 = 250 -20 – 12/2 =224 mm 
mmkNMmmkNMMax nn /.76.28/.8.228)224.0(156.4. 2 ===  

The section is under reinforced .max   

3.8

m 200mm 

Figure (5.5) Arrangement of steel for Example (5.3) 

2
0
0

m
m

 

200mm 

#10@200m

m 

#12@200m

m 

50 

200 

100 100 500 
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53.23)2085.0/(400 ==m 

MPakn 57.0)224.01/(02876.0 2 == 

00145.0
400

53.2357.02
11

53.23

1
=







 
−−=  

mmmAs /325224100000145.0 2==  

mmmAMin s /45025010000018.0. 2==  

ribmmribAs /2704506.0/ 2== , use 1# 20 for each rib =314 mm2. 

The top slab has to be reinforced using shrinkage and temperature 

reinforcement, 

mmmAs /905010000018.0 2== , max. spacing = 5×50 = 250 mm or 450 mm, 

therefore max. spacing = 250 mm, refer to Table (5.4) above, use # 6 @ 250 mm 

c/c both directions. 

5.3 Design of Double Reinforced Rectangular Sections 

When the beams dimensions are fixed for architectural reasons or because of its 

existence in a certain location, and the maximum nominal moment (Max.Mn) as 

a single reinforced section is less than the required nominal flexural strength 

(Mn), additional steel in tension and compression must be used to increase the 

moment capacity. The compression steel as mentioned previously may be used 

to act as: 

i. Stirrups hanger,  

ii. To decrease the long-term deflection due to creep and shrinkage, and  

iii. in zones where moment reversal may occur. 

The design method starts by comparing (Max.Mn) with the required nominal 

flexural strength (Mn). If (Mn > MaxMn), the beam must be designed as a double 

reinforced section, otherwise it is a single reinforced section, i.e.; ( .max  ). 

The required flexural strength is divided into two parts, the first one (Mn1) equal 

to (Max. Mn), Figure (5.6)  

2
1 .... dbkMaxMMaxM nnn ==                                                                (5.7) 

dbAs ...max1 =                                                                                        (5.8) 

 

Or As1 may be calculated as follow: 

)2/( .max

1
1

adf

M
A

y

n
s

−
=                                                                           (5.9) 

S. A. Al-Ta'an 



 14 

The other part of the moment (Mn2) equal to:  
12 nnn MMM −=                                                                                  (5.10) 

 

The two forces of the couple (Mn2) equal to: 

 

)/( '

222 ddMTC n −==                                                                              (5.11) 
ys fTA /22 =                                                                                              (5.12) 

21 sss AAA +=                                                                                    (5.13) 

Check the stress in the compression steel, 
1.max / ac =  

)(600
'

'

c

dc
fs

−
=  

 

 

 

 

 

 

 

 

 

 

 

 

 

                       Figure (5.6) Design of double reinforced sections 

If ys ff ' this means the compression steel will reach yielding, and to calculate 

the area of the compression steel the effective stress must be calculated first:                       
'" 85.0 cys fff −=                                                                                       (5.14) 

If ys ff '  then the effective stress equal to: 
''" 85.0 css fff −=                                                                                       (5.15) 

The area of the compression steel equal to: 

   
'"

2

' /
css fCA =                                                                                              (5.16) 

The ACI recommend that transverse reinforcement (stirrups, ties, or equivalent 

welded wire fabric) should be used where there is compression steel to avoid the 

probability of bucking. 
 

EXAMPLE 5.5 
A rectangular beam with b = 250 mm, h = 500 mm is simply supported on an 

effective span of 5.0 m. The beam carries a uniformly distributed working live 

 

2

111

..

..

dbk

zCzTM

n

n

=

== 

1sA 

+ 
bafC c ..85.0 '

1 = 

ys fAT .11 = 

b 

a 

2/adz −=  
'85.0 cf 

d 

c 

 

2tN 

)( 'dd − 

"'

2 . ss fAC =  

)(

)(

'

2

'

22

ddC

ddTM n

−=

−= 21 nnn MMM += 

  

2sA  
 

'
sA 

 

21 sss AAA += 

'
sA 
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load of 30 kN/m and a uniformly distributed working dead load of 10 kN/m 

(excluding the beam weight). Calculate the necessary area of steel.  MPaf c 20' =  

and .400MPaf y =  

SOLUTION 

Calculate the beam weight and add it to the DL, 

Beam weight = mkN /0.32415.025.0 =  

Total dead load=10+2=13 kN/m 

The factored (ultimate) load mkNwu /6.63306.1132.1 =+=  

The factored (ultimate) external moment mkNMu .75.1988/)5(6.63 2 ==  

Assume a value for ɸ to calculate the required Mn , a minimum value of 0.817 

can be assumed with ( 004.0=t , 0155.0.max = ), or (ɸ =0.9,  t=005.0 , 

0135.0.max = , MPakMax n 56.4. = ), then Mn equal to: 

 mkNM n .8.2209.0/75.198 =  

Assume an effective depth d = 410 mm, since the reinforcement will be arranged 

in two layers. The maximum nominal flexural strength equal to: 

mkNrequiredMmkNmMNMMax nn .8.220.6.191.6.191.041.025.056.4. 2 ====  

Therefore the beam must be designed as a double reinforced section. 

mkNMMaxM nn .6.191.1 ==  
2

1 13844102500135.0 mmAs ==  

mmda 13141032.032.0 ===  

mmdc 154410375.0375.0 === . 

Assume d’= 60 mm, 

MPafs 2.366)600(
154

60154' =
−

=  

MPafff css 2.3492085.02.36685.0 ''" =−=−=  

mkNMMM nnn .2.296.1918.22012 =−=−=  

MNddMTC n 0834.0)06.041.0/(0292.0)/( '

222 =−=−==  
As2 = 0.0834/400=209 mm2 

As = 1384 + 209 = 1593 mm2 

As
' = 0.0834/349.2 =239 mm2 

 

Refer to Tables (5.2) and (5.3) to choose the bars, there are many choices to 

provide the reinforcement, 3#22 + 3#16 = 1743 mm2, in two layers in the 

tension zone, and 2 #16 in the compression zone, Figure (5.7). Check the 

assumed effective depth:  

d=500-40-10-22-25/2=415mm 
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Which is greater than the assumed value by 1.2%, if the calculation is repeated 

for this value of (d) the new area of steel will not differ from too much from the 

final value. 

 

 

                     Figure (5.7) Arrangement of the 
                 bars for Example (5.5) 

 

 

 
EXAMPLE (5.6) 

A rectangular beam with b = 300 mm, h = 600 mm carries a working DLM of 

100 kN.m and a LLM of 150 kN.m.  MPaf c 30' =  and .345MPaf y = calculate the 

required area of steel so that bs dbA  35.0)]./([ 11 == to limit the deflection 

according to the recommendation of the ACI Committee 435. 

 

SOLUTION 

The external factored (ultimate) moment equal to: 

mkNMu .3601506.11002.1 =+=  
0392.0

345600

600

345

30
836.085.0 =

+
=b  

0137.00392.035.01 ==  

Form the equilibrium equation TC =  

345.0137.03085.0 = dbba   
da 185.0=  

This value is less than ad =31.0 for ( 005.0=t , 0232.0.max = ) and )9.0( = , the 

total required nominal flexural strength equal to: 
mkNM n .4009.0/360 =  

The required nominal flexural strength of the single reinforced beam (Mn1) equal 

to: 
2

1 .28.4)2/185.0(.185.03085.0 dbdbdM n =−=  

It is possible to use Equation (5.4) to find kn, 53.13)3085.0/(345 ==m : 

 

 
Assume d = 510 mm,  

250mm 

 

5
0
0

m
m

 

4
1
5

m
m

 

2#16 

3#22+3#16 

MPamfk yn 28.4)2/53.13137.01(3450137.0)2/1(. =−=−= 
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mkNMmkNdbM nn .400.33451.03.028.4.28.4 22
1 ====  

Therefore the beam must be double reinforced, and the moment must be divided 

into two parts:  
2

1 20965103000137.0 mmAs ==  
mma 94510185.0 ==          mmc 112836.0/94 ==  

mkNMMM nnn .6633440012 =−=−=  
Assume mmd 60' = , 

MNddMTC n 147.0)06.051.0/(066.0)/( '

222 =−=−==  
2

2 426345/147.0 mmAs ==  
225224262096 mmAs =+=  

MPafs 6.278
112

60112
600' =

−
=  

MPafff css 1.2533085.06.27885.0 ''" =−=−=  

2' 5811.253/147.0 mmAs ==  

Use 4#25 + 2#20 = 2592 mm2, four in  

the bottom layer and two in the upper  

layer in the tension zone and 2#20  

= 628 mm2 in the compression zone as  

in Figure (5.8). check the value of d: 

mmmmd 5105132/25251040600 =−−−−=  
This is approximately equal to the assumed value. 

If the value of 1 is not assigned to limit the deflection, it is possible to design 

the section as single reinforced one with ( 22565mmAs = ), but the difference 

between the two beams is that the double reinforced beam will have less 

deflection than the single reinforced especially the long-term deflection. 

5.4 Design of T-beams 

The design of T-beams include determination of the flange thickness (hf), 

effective flange width (b), web width (bw), total depth (h), and area of steel (As). 

The thickness of the flange (hf) is determined before designing the beam. The 

effective width (b) depends on the span and distance between the beams which 

determined during preparing the preliminary drawings, and therefore the web 

dimensions and area of steel are unknowns. When choosing the web dimensions, 

the following conditions must be satisfied if possible: 

i. Keeping the reinforcement ratio low to avoid excessive deflection, 

ii. Keeping the shear strength that depends on  ).( dbw and )( '
cf more than the 

external factored shear force, 

300mm 

6
0
0

m
m

 

Figure (5.8) Arrangement 

of steel for Example (5.6) 

4#25+2#20 d
=

5
1
3

m
m

 

2#20 
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iii. In continuous beams the dimensions )( wb  and (d) are compatible with the 

requirements of the negative moment region, where the section is 

designed as a rectangular section with dimensions ).( dbw .  

In addition to the longitudinal (main) reinforcement, the ACI code recommends 

that the flange must be reinforced perpendicular to the longitudinal axis of the 

beam in locations where the main slab reinforcement is parallel to the beam. The 

transverse reinforcement should be designed to carry the factored load on the 

cantilever part of the flange with a span [(b-bw)/2] as shown in the Figure below. 

The maximum spacing for this reinforcement should not exceed 5hf or 450 mm. 

 

 

 

 

 

 

 

If the flange is in tension (Negative moment region), the reinforcement is placed 

at the top and part of it should be distributed in the effective flange width (b) or 

(span/10) whichever is smaller. If (b) > (span/10) longitudinal reinforcement 

should be placed on the exterior part of the flange between the limits of (b) and 

(span/10) to limit the cracks that may occur outside the web.    

To find the area of steel, calculate the nominal flexural strength (Mnf) assuming 

that the whole flange is carrying compression (a = hf): 

                                                  (5.17)  

   

 

This value is compared with the required Mn, if: 

i. Mn < Mnf, therefore a < hf, and the beam is treated as a rectangular beam 

with dimensions (b×d), 

ii. Mn = Mnf, a = hf, and the beam is treated as a rectangular beam with   

      dimensions (b×d),  

iii.   Mn > Mnf, a > hf, and the beam is a T-beam. 

In the last case, the area of steel is composed of two parts, the first one 

equalizing the compression on the flange (outside the web sides) Asf:                                                                                                                                                                                   

ywfcsf fbbhfA /)(85.0 ' −=                                                                         (5.18) 

)2/(..85.0 '
ffcnf hdbhfM −=

 Figure (5.9) Distribution of reinforcement 

on the top of the flange of a T beam 

w us  

bw  

(b-bw)/2  (b-bw)/2  
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The nominal strength for this part equal to: 

                                                           (5.19) 

 

The second part of the moment Mn2, is carried by a rectangular section of 

dimension (bw.d).The area of steel for this part (Asw) is calculated as for single 

reinforced sections.  

 

EXAMPLE 5.7 

A reinforced concrete floor composed of a slab 100 mm thick and 

supported on a series of beams 1.30 m center to center and a span of 

6.0 m, Figure (5.10). bw = 300 mm, h = 600 mm, Mu = 720 kN.m. 

MPaf c 20' =  and MPaf y 400= . Find the necessary area of steel. 

SOLUTION 

 

Calculate the effective flange width (b): 
mspanb 5.14/0.64/ ==  

 

 

 

 

 

 

 

Figure (5.10) Reinforced concrete floor of Example (5.7) 

 

mmhbb fw 19001001630016 =+=+ 
clearbb w +  cedistan  between  mmbeams 13001000300 =+=  

Therefore b = 1.30 m. 

Assume d = 510 mm, since the reinforcement may be arranged in two layers, 

assume also φ =0.9 and its value will be checked later. 

The required flexural strength Mn equal to: 

mkNM n .8009.0/720 =   
If the whole flange is under compression, the nominal flexural strength Mnf 

equal to: 
)2/1.051.0(3.11.02085.0 −=nfM  mkNmkNmMN .800.1017.017.1 ==               

Therefore a < hf  and the beam can be considered as a rectangular beam with 

dimensions (b×d). to calculate the required area of tension steel, use Equations 

(5.4. and 5.5)  

MPakn 37.2
51.03.1

8.0

2
=


= 

)2/(.1 fysfn hdfAM −=

300mm 300mm 1.0m 1.0m 

100mm 

300mm 
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53.23
2085.0

400


=m 

0064.0
400

53.2337.22
11

53.23

1
=







 
−−= 

2424351013000064.0 mmAs ==  

Compare w  with .max,w to check whether the beam is under or over reinforced: 

0277.0
510300

4243
=


=w 

22 425000425.0
400

)3.03.1(10.02085.0
mmmAsf ==

−
= 

0278.0
510300

4250
=


=f  

From Table (4.3),  ( 005.0=t , max0135.0 = , and 0135.0max = ), therefore 

.max,w equal to: 

0277.00413.00278.00135.0.max, ==+= ww   

the beam is under reinforced, use 3#35 and 3#25 = 4359 mm2, the actual value 

of d equal to: 

 

 

 

d= 600 - 86 = 514 mm, a small difference of 0.78%. The value of a is calculated 

for this area of steel, 

 

 , mmc 9385.0/77 ==       
 

005.001358.093/003.0)93514( =−=t , therefore φ = 0.9 as assumed before and 

the beam is under reinforced. 

 

   
 
 

                 Figure (5.11) Arrangement of 

                      bars for Example (5.7) 

 
 
 

 

mma 79
13002085.0

4004356
=




=

mmyc 86
4356

5.12249135.679623
=

+
=

5
1
4

m
m

 

300mm 

3#35+ 

3#25 
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EXAMPLE 5.8 

In example (5.7) if the moment Mu  is increased to 960 kN.m, determine the 

required area of steel. 

 

SOLUTION 

  

Assume a value of 0.9 for  subjected to a later check. The required nominal 

flexural strength Mn equal to: 
mkNMmkNM nfn .1017.10679.0/960 ==  

Therefore a > hf  and it is a T beam. First the area of steel required to equalize 

the compression in the wings of the flange is calculated, from the previous 

example it is Asf =4250 mm2. The nominal flexural strength for this area of steel 

equal to: 

)2/(.1 fysfn hdfAM −= 
mkNmMN .5.739.5.739.0)2/15.051.0(400004250.0 ==−=                 

The remaining moment Mn2 equal to: 
mkNM n .5.3275.73910672 =−= 

MPakn 2.4
51.03.0

3275.0
2
=


=  

0123.0
400

53.232.42
11

53.23

1
=







 
−−=  

218825103000123.0 mmAsw ==  

2613218824250 mmAAA swsfs =+=+= 
0401.0

510300

6132
=


=w  

Compare 0382.0=w with 0413.0.max, =w , therefore the section is under 

reinforced and  005.0t and φ = 0.9.  

Use 3 # 35+6#28 =6582 mm2 can be used in three layers as shown below. The 

value of d = 600 – 40 -10 - 35 – 25-28/2 =  476 mm, or can be calculated exactly 

as: 

 

 

 

d = 600  - 114 = 486 mm, the difference is 4.7%  while the provided area of steel 

is already 7.3% more than required. However, if the area of steel is recalculated 

for this new depth of (486 mm), the area of steel = 6584 mm2 which is 

approximately equal to the provided area of 6582 mm2. 

                                               
     
  

mmyT 114
6582

177616312461635.679623
=

++
=

 

3#35+

6#28 5
0
4

m
m
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                 Figure (5.12) Arrangement of bars  

                             for Example (5.8) 

 
  

 

 

 

 

 

5.6 DESIGN OF BEAMS WITH SPECIAL SHAPES 

 

When the area under compression is not rectangular, the steps below may be 

followed to find the required area of steel: 

i. Assume a value of the lever arm (z = 0.8-0.9d), 

ii. Assume a value of φ subjected to later check, 

iii. From the first equilibrium equation, calculate C and T: C = T = Mn/z, 

iv. Calculate the required area under compression: Ac = C/(0.85fc'), 

v. Divide the area into components (triangles and rectangles) and calculate 

the centroid of this area (yc), z = d - yc 

vi. Repeat steps 3 to 5 until the values converge. 

vii. The required area of steel then equal to As = 0.85fc
'(Ac)/fy,  

viii. Compare this area of steel with maximum As, to check whether the 

section is under or over reinforced, 

ix.  Calculate c to find t ,  and compare with assumed value at the 

beginning.  

EXAMPLE 5.9 

 

The section in Figure (5.13) is subjected to a factored moment Mu = 360 kN.m. 
MPaf c 20' =  and MPaf y 276=  , find the required area of steel. 

SOLUTION 

 Assume 9.0=    

mkNM n .4009.0/360 =  

Assume z = 500 mm (0.77d), since the area at the top is a triangle, 
MNzMTC n 8.05.0/4.0/ ====  

22

'
47059047059.0

2085.0

8.0

85.0
mmm

C
A

c

c ==


==  

This area is more than that of the triangle (22500 mm2) at the top, therefore a > 

150 mm: 

)150(3002250047059 −+= a  
mma 232=  

 

5
0
0

m

m
 

a
=

2
3

4
m

m
 

1
5
0

m
m
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mmc 27385.0/232 ==                      
004143.0003.0

273

273650
=

−
=t  

The section is in the transition zone, and    equal to: 

829.0)3/250)(002.000413.0(65.0 =−+=  

Assume 8.0=   
mkNM n .4508.0/360 =  

 

 
22

'
52941052941.0

2085.0

9.0

85.0
mmm

C
A

c

c ==


==  

 

 

  mmc 29585.0/251 ==  

                             
 

 

The section should be designed as a double reinforced section, the required 

nominal flexural strength equal to: 
mkNM n .6.440817.0/360 ==  

Take the value of mmdaa 23436.0.max === and calculate the maximum area under 

compression: 
247700300)150234(22500. mmAMax c =−+=  

 

The centroid of this area: 

 

mmyc 149
47700

)42150)(150234(300)100(22500
=

+−+
=

mmz 501149650 =−=  

The maximum nominal flexural strength equal to: 

 
=== zAMaxfMMMax ccnn ).(85.0. '     

mkN.3.406501.0477.02085.0 =                 

2

'

1 2938
276

0477.02085.0..85.0
mm

fy

AMaxf
A cc

s =


== 

mkNM n .3.343.4066.4402 =−= 

mma 251=

MNzMTC n 9.05.0/45.0/ ====

)150(3002250052941 −+= a

004.000361.0003.0
295

295650
=

−
=t
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MNTC 0581.0)06.065.0/(0343.022 =−==  
2

2 211276/0581.0 mmAs ==  

 

 use 3#32 + 2# 25 = 3394 mm2                         

c=234/0.85=275 mm ,           MPafMPaf ys 276469
275

60275
600' ==

−
=  

2' 224)2085.0276/(0581.0 mmAs =−= , use 2#12 =226 mm2. 
 
5.6 REINFORCING VERTICAL FACES FOR DEEP BEAMS  

 

Deep beams require longitudinal reinforcement in addition to the main 

tension reinforcement to limit the width of cracks that extend from the 

tension face upward (in case of positive moment), or downward (in 

case of negative moment). The ACI recommend that for beams with 

total depth more than 900 mm, additional steel should be provided on 

the vertical faces between the mid depth and the tension face, the 

spacing of this reinforcement should not exceed: 

                                             (5.20) 

 

Where Cc = clear concrete cover to the vertical face of the beam, and fs = 

working steel stress which may be taken = (2fy/3). The used bars diameter 

ranges between 10 to 16 mm. Such additional reinforcement may be included in 

the flexural strength calculation.  

231492112938 mmAs =+=

( ) )/276(3055.2/276375 scs fCfs −=
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Introduction 

TYPES OF SLABS 

In reinforced concrete construction, slabs are used to provide flat, useful 

surfaces. A reinforced concrete slab is a broad, flat plate, usually horizontal, 

with top and bottom surfaces parallel or nearly so. It may be supported by 

reinforced concrete beams (and usually cast monolithically with such beams), by 

masonry or reinforced concrete walls, by structural steel members, directly by 

columns, or continuously by the ground. 

 

 

 



 
 
 
 

 

Fig. (6.1) Types of Slabs, (a) One-way slab, (b) Two-way slab, (c) One-way 

slab, (d) Flat plate, (e) Flat slab with drop panel, (f) Two-way ribbed slab. 

Approximate thickness of a two-way slab supported on beams or walls can be 

found by the following equation: 

         
180

Perimeter
h =  

The coefficients in Tables (1-4) can be used to bending moments in the x and y-

directions. The values in the Tables are based on the assumptions that the 

supports are rigid. 

The deflection for the two perpendicular strips are equal at the intersection 

point: 

Δ𝑎 =
5𝑤𝑎𝐿𝑎

4

384𝐸𝐼
= Δ𝑏 =

5𝑤𝑏𝐿𝑏
4

384𝐸𝐼
 

𝑤𝑎𝐿𝑎
4 = 𝑤𝑏𝐿𝑏

4  

𝑤𝑎/𝑤𝑏 = (𝐿𝑏
4/𝐿𝑎

4 ) = 1/𝑚4    ba LLm /=   

𝑤𝑎 = 𝑤𝑏/𝑚
4 

𝑤𝑇 = 𝑤𝑎 +𝑤𝑏 = 𝑤𝑏/𝑚
4 + 𝑤𝑏 = 𝑤𝑏(

𝑚4 + 1

𝑚4
) 

𝑤𝑏 = 𝑤𝑇(
𝑚4

𝑚4+1
)      𝑤𝑎 = 𝑤𝑇(

1

𝑚4+1
) 



 
 
 
 

 

Percentage of load transferred in each direction 

La /Lb 1.0 2/3=0.667 1/2=0.5 1/3=0.333 1/4=0.25 

wa/wT 1/2=.5 81/97=.835 16/17=.941 81/82=.988 256/257=.996 

Wb/wT 1/2=.5 16/97=.165 1/17=.059 1/82=.012 1/257=.004 

 

EXAMPLE 1: 

A two-way reinforced concrete building floor system is composed of slab panels 

measuring 6.0×7.5 m (c/c) in plan, supported by shallow column-line beams cast 

monolithically with the slab (350×500 mm). Using fc
'=30 MPa and fy = 400 

MPa, design a typical exterior panel to carry a service finishing DL = 2.67 kPa 

and live load of 5 kPa in addition to the self-weight of the floor.  

 

SOLUTION: 

La = 6-0.35 = 5.65 m 

Lb = 7.5-0.35 = 7.15 m 

mmm
Perimeter

h 142142.0
180

)15.765.5(2

180
==

+
==  

Use h = 175 mm, 

Self-weight of the slab = 0.175×1×1×24 = 4.2 kPa, 

 

 



 
 
 
 

 
 

 

 

Total DL = 4.2 + 2.67 =6.87 kPa, 

Ultimate dead load on the slab wud = 1.2×6.87 = 8.24 kPa. 

Ultimate live load on the slab wuL = 1.6×5 = 8 kPa. 

Total ultimate load on the slab wus = 8.24 + 8 = 16.24 kPa. 

 

Moments in the short direction: 

  

 m = La /Lb = 5.65 / 7.15 = 0.79 

referring to Tables (1-4), the slab is case (9). 

Negative moment: 

 

From Table 1 , the coefficient equal to: 0.075; 

mmkNveMu /.79.38)65.5(24.16075.0 2
1 ==−  

mmkNveM u /.79.382 =−  

 

Positive moment: 
+𝑣𝑒𝑀𝑢𝑑 = 0.029 × 8.24(5.65)2 = 7.63𝑘𝑁.𝑚/𝑚 

6
.0

 m
 

6
.0

 m
 

3.75 

m 

D 

7.50 m 

C A 

B 



 
 
 
 

+𝑣𝑒𝑀𝑢𝐿 = 0.042 × 8(5.65)2 = 10.73𝑘𝑁.𝑚/𝑚 
+𝑣𝑒𝑀𝑢𝑎 = 7.63 + 10.73 = 18.36𝑘𝑁.𝑚/𝑚 

dshort = 175 -20 -12/2 =149 mm 

Moments in the Long direction: 

Negative moment: 

From Table 1 , the coefficient equal to: 0.055; 

mmkNveMu /.11.14)15.7(24.16017.0 2
1 ==−  

mmkNveM u /.02 =−  

Positive moment: 

mmkNveMuad /.21.4)15.7(24.801.0 2 ==+  

mmkNveMuaL /.16.7)15.7(8017.0 2 ==+  

mmkNveM ua /.37.1116.721.4 =+=+  

dlong = 149 – 12 = 137 mm 

Summary of two-way slab design 

 Short direction Long direction 

 -ve Mu +ve Mu -ve Mu -ve Mu +ve Mu -ve Mu 

Mu 38.79 18.36 38.79 14.11 11.37 0 

Mn 43.1 20.4 43.1 15.67 12.63 0 

d 149 149 149 137 137 137 

kn (MPa) 1.94 0.92 1.94 0.83 0.67 0 

fy/(0.85fc
') 15.69 15.69 15.69 15.69 15.69 15.69 

ρ 0.00505 0.002343 0.00505 0.00211 0.0017 0 

As 752 349 752 289 233 0 

Min. As 0.0018×1000×175=315 mm2/m 

Req. As 752 349 752 315 315 315 

Prov. As # 12 

@150 

mmc /c 

# 10 @ 

200 mm 

c/c 

# 12 

@150 mm 

c /c 

# 10 

@250 mm 

c /c 

# 10 

@250 

mmc /c 

# 10 

@250 

mmc /c 

Load transferred in both directions: 

Short direction: 

wa =0.83×16.24 = 13.48 kN/m  (13.48/2 = 6.74 kN/m) on each support 

Long direction: 

wb =0.17×16.24 = 2.76 kN/m  (2.76/2 = 1.38 kN/m) on each support 
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Shear Strength of Beams 

 

 7.1 INTRODUCTION   

Reinforced concrete members should resist the shear forces that seldom act 

alone but with bending moments, axial forces, and sometimes torsion. The 

shear transfer in reinforced concrete members depends on the tensile and 

compression strength of concrete. When shear failure occurs, the deflection 

is usually small and seldom ductile, and this type of failure must be avoided 

in practice, and to achieve this, the shear strength of the member should be 

more than its flexural strength.  

The tensile strength of concrete is very small compared with its compression 

strength and the shear strength is between the two. Most shear failures are 

basically a diagonal tension or diagonal compression failure.    

Reinforced concrete composed of two materials (concrete and steel) and the 

equations used for the analysis of homogeneous members can be used for 

reinforced concrete members to predict the initiation of diagonal tension 

cracking and shear strength. 

7.2 Shear Stresses in Homogeneous Beams  

The horizontal shear stresses in homogeneous beams are useful to know the 

stresses created in the beams web:                                            

bI

QV
v

.

.
=                                                                                        (7.1) 

Where V = shear force acting on the cross-section, I = moment of inertia, b 

= width of cross-section, and Q = moment of the area between the level 

considered and the nearest face about the neutral axis.  

It is possible to imagine the role of shear stresses for a beam composed of 

two rectangular strips under vertical loads, Figure (7.1). If the bond between 

the two strips is perfect, the deformation is as shown in Figure (7.1a). If the 

bond is weak, the two strips will separate and slide over each other as shown 

in Figure (7.1b). If the bond between the two strips is perfect, there are 

horizontal stresses at the common interface between the two faces to prevent 

sliding as shown in Figure (7.1c). Such stresses are created in horizontal 

planes of beams composed of one part and its magnitude varies with the 

distance from the neutral axis. Figure (7.1d) show a small part of a beam 

with dimensions (b×h) subjected to a shear force V. Vertical equilibrium is 
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provided by vertical shear stresses. These stresses vary parabolically from 

zero at the top and bottom faces to maximum at the neutral axis. The average 

of theses stresses equal to vavg. = [V/(b×h)]. For shapes other than 

rectangular sections, it is possible to use Equation (7.1) to predict the 

magnitude and distribution of shear stresses.     

 

 
 

 

 

In Figure (7.2) show the distribution of shear and longitudinal flexural 

stresses on three elements, at the neutral axis where there are shear stresses 

only (longitudinal flexural stresses = 0) Figure (7.2b) diagonal tensile and 

compression are created on the element diagonals. In the compression zone 

where there are both shear (v) and longitudinal flexural compression stresses 

(c) Figure (7.2c) the diagonal tensile stresses on (a-a) decrease and the 

diagonal compression stresses on (b-b) increases. In the tension zone where 

there are both shear and longitudinal flexural tension stresses (t) Figure 

(6.2d) the diagonal tensile stresses on (a-a) increases and the diagonal 

compression stresses on (b-b) decrease.    

 

Using the relationships of combining stresses (shear and flexural stresses) it 

is possible to draw stress trajectories as shown in Figure (7.2e): 

 

22)2/(2/, vffct +=                                                                   (7.2)                 

 Figure (7.1) Vertical and horizontal shear stresses in homogeneous beams   
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The resulting stresses composed of superposing the shear and flexural 

stresses at any point. When the diagonal tensile stresses exceed the tensile 

 
Figure (7.2) Diagonal stresses in a homogeneous beam, (a) uniformly 

loaded beam, (b) Stresses at point A, (c) Stresses at point B, (d) Stresses 

at point C, (e) Tensile stress trajectories 
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strength of concrete, cracks will initiate perpendicular to the stress 

trajectory.                                         

 

 7.3 Shear Stresses in Reinforced Concrete Beams 

 

Figure (7.3a) shows the shear stress distribution for a single reinforced 

rectangular beam. The shear stress distribution above the neutral axis is the 

same as that for a homogeneous beam. Figure (7.3b) shows the increase in 

the tensile force (dT) that should be equalized by a shear stress (v) 

multiplied by a horizontal area (b×dx), because the tensile stress of concrete 

vanishes after the appearance of cracks, since (dT= v×b×dx) and (dT=dM/z), 

solving the two equations: 

                               

                     
zb

V

bzdx

dM

bdx

dT
v

..

11
=








=








=                                 (7.3)                       

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure (7.3) Distribution of shear stresses in reinforced concrete sections 

(a) 

Level arm 

z 

v v 

T+dT 

dx 

T 

C+dC C 

v=V/bd 
T+dT T 

dx 

(b) 

N A 

v=V/bw.z 
bw  

b  

hf  

N  A  

(c) 
(d) 

d  

A  N  

v=V/b.z 
b  
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The zone under the neutral axis remains under a state of pure shear and the 

above equation gives a measure of the diagonal tension in the cracked zone.  

 

All codes of practices uses Equation (7.3) as an index for the shear stress and 

replace the lever arm (z) by the effective depth (d): 

db

V
v

w.
=                                                                           (7.4) 

 

6.4 Behaviour of Beams without Shear Reinforcement 

In reinforced concrete beams, inclined cracks appear in the web either 

without flexural cracks (usually vertical), adjacent to it, or extension of the 

flexural cracks. Inclined cracks that appear in the web of uncracked beam, 

Figure (7.4a) called (web shear cracks). Inclined cracks that are extension of 

vertical flexural cracks called flexure shear cracks, Figure (7.4b).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A 

A 

(a) Web shear crack 

 (b) Flexure shear crack 

 Primary crack 
 Secondary crack 

 Flexure shear 

crack 

 Figure (7.4) Types of  

inclined shear cracks 
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7.4.1 Transfer of Shear Forces in Reinforced Concrete Beams 

Shear transfer in reinforced concrete members composed of the following 

actions, Figure (7.5): 

i. Shear strength of concrete in the compression zone, Vcz, 20-40% of the 

external shear force 

ii. Aggregate interlock on the cracks faces, this action is similar to the 

irregular interlock of the aggregates on rough surfaces of cracks, 33-

50% of the external shear force 

iii. Dowel action, which represent the resistance of the longitudinal 

reinforcement to the transverse shear forces, 15-25% of the external 

shear force 

iv. Arch action in deep beams, and 

v. Shear strength of stirrups (vertical or inclined). 

 

  

 

 

7.4.2 Modes of Failure      

The mode of shear failure and shear strength depends on the shear span / 

effective depth: 

 

i. When av / d > 6.0, flexure failure may occurs, 

ii. When  av / d < 6.0, shear failure mostly occurs, and in this case 

various types of failure may be identified depending on av / d: 

(a) Diagonal tension failure occurs when  ( 2.5 < av / d < 6.0), Figure 

(7.6a), 

 

 Figure (7.5) distribution of shear resistance after the appearance of 

inclined cracks 
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(b) Shear-compression failure when ( 1.0 < av / d < 2.5), Figure (7.6b), 

(c)  Shear-tension failure when ( 1.0 < av / d < 2.5), Figure (7.6c), if the 

bond between the steel and concrete is weak, and 

(d)  Splitting or true shear failure occurs when ( av / d < 1.0 ), Figure 

(7.6d). 
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7.5 Critical Section for Calculating the Nominal Shear Strength 

 

The shear span has a great effect on the shear strength and shear failure, and 

the worst location of the (diagonal tension failure) of a concentrated load on 

a simply supported beam is not near the support but at a certain distance 

from the support. The ACI Code recommends that the critical section for 

shear is a distance (d) from the face of support. The zone between the face of 

support and the critical section is designed for the same shear as that at the 

critical section.  

There are cases where the critical section for shear should be taken at the 

face of support: 

i. When the shear increases in the direction of the face of support, and 

the support is a beam or girder and there is no compression at the 

support, 

ii. When there is concentrated load at a distance ≤ d, 

iii. When there is a load may create inclined crack at the face of support 

and extend into the support. 

Figure (7.7) Types of shear failures, (a) diagonal tension failure, (b) shear-

compression failure, (c) shear –tension failure, (d) splitting or true shear failure 

Typical failure of deep 

beams 
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6.6 Shear Strength of Beams without Shear Reinforcement 

The shear strength is influenced by the shear span / effective depth, tensile 

strength of concrete, and the reinforcement ratio. The ACI Code 

recommends the following Equation for the shear strength of concrete: 

          db
M

dV
fV w

u

u
wcc .

.
120

7

1 '








+=     dbf wc .29.0 '                (7.5a) 

Or in a simpler form:                                                                                                                                                                                                

db
f

V w
c

c .
6

'
=                                                                                       (7.5b) 

  Figure (7.7) Critical section for shear for some cases 
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=uV  external ultimate or factored shear force acting on the section,  =uM  

external ultimate or factored moment acting on the section, 0.1/ uu MdV , the 

reason for this limitation, that the moment at the points of inflection and 

regions with small bending moment will result in very high shear strength. 

The width of the section bw in the above Equation is that for the web when 

the section is T shape.  

 

The factor  (λ)  is for the type of concrete: 

i. Equal to 1.0 for normal weight concrete, 

ii. Equal to 0.75 for all light weight concrete, and 

iii. Equal to 0.85 for sand light weight concrete. 

If ctf splitting strength of concrete is known then λ = 0.1/8.1 ' cct ff  

7.7 Role of Shear Reinforcement   

 

Figure (7.8) shows the types of shear reinforcement: 

i. Vertical stirrups perpendicular to the main tension reinforcement, 

ii. Inclined stirrups with an angle ≥ 45ᵒ to the main tension 

reinforcement, 

iii. Longitudinal bent up reinforcement with angle of inclination ≥ 30ᵒ, 

and  

iv. Longitudinal bent up reinforcement with vertical or inclined stirrups. 

Spiral bars and welded wire fabrics may be used as shear reinforcement. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure (7.8) Types of shear reinforcement 

Inclined stirrups 

α2=45o α1≥30o 
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From the figure above, the stirrups are vertical or inclined reinforcement 

distributed along the span or part of it and embedded in the compression 

zone and wraps around the tension reinforcement. Before the inclined cracks 

initiation there is no stresses in the stirrups, after the cracks initiation which 

intersects the stirrups and tensile stresses will be developed, and the stirrups 

increase the shear strength by the following actions: 

i. Improve the dowel action by warping the longitudinal bars 

intersecting the inclined shear cracks,   

ii. Retarding the extension of the inclined cracks thus increasing the 

aggregate interlock, 

iii. Preventing bond failure when the longitudinal cracks appear.   

 

7.8 Shear Strength of Shear Reinforcement 

 

The vertical stirrups are the most widely used stirrups because it is easy to 

shape and place. The nominal shear strength (Vs) of inclined stirrups equal 

to: 

dbfsdfAV wcyvs

'

3

2
/)cos(sin. +=                                                           (7.6)   

α = angle of inclination, if α = 90ᵒ (vertical stirrups) , Vs becomes equal to: 

dbfsdfAV wcyvs

'

3

2
/. =                                                                            (7.7) 

 

Av = area of both legs of stirrups = 2 Ab (U- stirrups) or = 4 Ab (w-stirrups). 

 

Longitudinal bent-up bars act also as shear reinforcement like inclined 

stirrups, and its Vs equal to: 

 

 

                                                                  (7.8) 

The ACI Code limits the yield strength of shear reinforcement to 400 MPa, 

to limit the width of inclined shear cracks. 

7.9 Spacing of Shear Reinforcement       

 

The ACI Code limits the spacing of vertical shear reinforcement to (d/2 or 

600 mm) to ensure that each 45ᵒ crack  may be intersected by a stirrup if  

db
f

fAV w
c

yvs .
4

sin.

'

= 
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, the limits become (d/4 or 300 mm). db
f

V w

c

s
3

'

 when db
f

V w

c

s
3

'

   

The spacing of inclined shear reinforcement [0.75(d-d’)]  when  

)]. ’d-limits become [0.375(d, the db
f

V w

c

s
3

'

 when db
f

V w

c

s
3

'

   

 

7.10 Minimum and Maximum Limits for Shear Reinforcement  

 

The ACI Code limits the minimum strength of shear reinforcement by: 

dbVMin ws
3

1
. =  (MN)  or  

y

w
v

f

sb
AMin

3

.
. =    (mm2) 

db
f

VMin w

c

s
16

.

'

=  (MN)     or  
y

wc

v
f

sbf
AMin

.

16
.

'

=   (mm2) 

The ACI Code recommends that when: 

 2/cn VV   there is no need to use  minimum shear reinforcement. 

The ACI Code limits also the maximum shear strength for shear 

reinforcement and reinforced concrete members by: 

 db
f

db
f

db
f

VMaxVVMax w

c

w

c

w

c

scn
6

5

3

2

6
..

'''

=+=+=                                                             

  Table (6.1) Summary of design for shear reinforcement according to ACI Code 

 

Spacing vA Limits of Vn Zone 

 

--------- 

2/cn VV          

No shear 

reinforcement 

required 

db
f

V w
c

n .
12

0

'

 

1 

d/ 2 or 600 mm 
 or 

y

w

f

sb

3

.
Min. 

y

wc

f

sbf

16

.'

 

db
f

VVMinV w

c

nsc .
12

.

'

+ 
2 

d/ 2 or 600 mm 

df

sV

y

s

.

.
 db

f
VVMinV w

c

nsc .
2

..

'

+ 
3 

d/4 or 300 mm 

df

sV

y

s

.

.
 

db
f

Vdbf w
c

nwc .
2

.)
6

5
(

'
'   

4 
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EXAMPLE (6.1) 

 

Determine the minimum dimensions of a rectangular beam if the shear is 

controlling the design without using shear reinforcement. MPaf c 25' = and 

.180kNVu =  

SOLUTION 

 

Shear strength of concrete equal to: 

dbdb
f

V ww
c

c .
6

25
.

6

'

==  

The required nominal shear strength equal to: 
kNVV un 24075.0/180/ ==   

Since there is no shear reinforcement: 

db
V

V w
c

n .
12

5

2
24.0 ==   

From the above equation: 
2576.0. mdbw =  

If 2/ wbd  the above equation becomes: 

576.0)2( =ww bb  

mmmbw 537537.0 == , if bw is chosen equal to 550 mm, then d =1047 mm, 

and h= 1047+63=1110 mm. the final dimensions of the beam are: 

B =500 mm and h =1150 mm. 

 

EXAMPLE (6.2) 

 

A rectangular beam with b =350 mm, d = 637 mm, MPaf c 20' =  and =yf  

MPa400 . Determine the spacing of #10 vertical stirrups for the following 

factored (ultimate) shear forces: 

(a) Vu = 60 kN, (b) Vu = 250 kN, © Vu = 400 kN, (d) Vu = 700 kN. 

 

SOLUTION 

 

(a) Vu= 60 kN 

     kNVV un 8075.0/60/ ==   
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kNVkNV nc 802.1661000637.035.0
6

20
===  

Compare Vn   with Vc/2 

nc VkNV == 1.832/2.1662/  

Therefore the section doesn’t require shear reinforcement. 

 

(b) Vu = 250 kN 

kNVkNVV cun 2.1663.33375.0/250/ ===   

Therefore the section requires shear reinforcement. 
kNVs 1.1672.1663.333 =−=  

kNdbVMin ws 3.741000637.035.0
3

1
.

3

1
. ===  

kNdb
f

VMin w
c

s 3.621000637.035.0
16

1
.

16
.

'

===  

kNVMinkNVq ss 3.74.1.167.Re ==  

sw
c

VkNdb
f

== 4.3321000637.035.0
3

20
.

3

'

 

Therefore the spacing of stirrups = d/2=637/2=319 mm or 600 mm 

whichever is smaller. 

mmdsMax 3192/6372/. ===  

mmsmmm
V

dfA
s

s

yv
319.max241241.0

1671.0

637.040010158.. 6

===


==
−

Use #10 U vertical stirrups @ 225 mm c/c. 

 

(c) Vu = 400 kN 
kNVkNVV cun 2.1663.53375.0/400/ ===   

kNVs 1.3672.1663.533 =−=  

kNVkNdb
f

sw
c

1.3674.3321000637.035.0
3

20
.

3

'

===  

Therefore the maximum spacing between stirrups less than d/2=319 mm. 

compare Vs with the maximum limit of Vs 
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swcs VkNdbfVMax === 8.6641000637.035.020
3

2
.

3

2
. '  

Therefore maximum spacing = d/4=159 mm or 300 mm whichever is 

smaller:   

mmdsMax 3192/6372/. ===  

m
V

dfA
s

s

yv
1097.0

3671.0

637.040010158.. 6

=


==
−

                     

mmsMaxmm 159.110 =  

Use #10 U stirrups @ 100 mm c/c. 

(d) Vu = 700 kN 

 
kNVV un 3.93375.0/700/ ==   

nwcn VqkNdbfVMax .Re9.8301000637.035.020
6

5
.

6

5
. ' ===  

Therefore a larger cross-section or higher compression strength of concrete 

should be used. 

 

EXAMPLE 6.3 

 

 A cantilever beam with a span of 2.4 m subjected to a uniformly distributed 

live load of 10kN/m and a uniformly distributed dead load of 7kN/m, in 

addition to the beam weight. Determine the zones that require shear 

reinforcement.  MPaf c 20' = and .400MPaf y =  

SOLUTION: 

Add the beam weight to the DL; 

Beam weight = 0.25×0.4×1×24 = 2.4 kN/m 

wu =1.2(2.4+7)+1.6×10 = 27.28 kN/m 

Vuf = 27.28×2.4 = 65.5 kN ,     Vnf = 65.5/0.75 = 87.3 kN 

Vud = 27.28(2.4-0.34) = 56.2 kN  ,    Vnd=56.2/0.75=74.9 kN 

kNVkNV ndc 9.744.63100034.025.0
6

20
===    

Therefore the beam require shear reinforcement at point (d). 
kNVc 7.312/4.632/ ==    

Figure (6.9) shows the Vu and Vn diagrams and the points where Vn = Vc / 2 

and Vc and the zone that does not require shear reinforcement.  
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1

7.31

4.2

3.87

x
=   ,   x1= 0.871m = 871mm (from the free end to this point the 

beam does not require shear reinforcement) 

3

4.63

4.2

3.87

x
=   ,   x3=1.743m=1743mm 

 

x2=x3-x1=1743-871=872mm 

100034.025.0
3

1
.

3

1
. == dbVMin ws  

             kN3.28=  

100034.025.0
16

20
.

16
.

'

== db
f

VMin w
c

s  

             kN8.23=  
3.284.63. +=+ sc VMinV  

                     kNVkN nd 9.747.91 ==  

 

  

Therefore the beam requires minimum shear reinforcement from the point 

(x1) to the face of support. If #10 U stirrups is used, the spacing will be as 

shown below: 

mbfAs wyv 758.025.0/400101583/.3 6 === −

 

m
b

fA

f

s
w

yv

c

904.0
25.0

40010158

20

16.16 6

'
=


==

−

 

mmdsMax 1702/3402/. ===  

Use #10 U stirrups @ 150 mm c/c. the through which shear reinforcement 

should be provided Lv = 2400 - 871 = 1529 mm, number of stirrups              

= 1529 /150 = 10.1,  

Use 11 #10 U stirrups, 1 @ 75 mm + 10 @ 150 mm c/c.  

 

6
5
.5

k
N

 

5
6
.2

k
N

 

8
7
.3

k
N

 

7
4
.9

k
N

 Vc/2= 

31.7kN 

Vc= 

63.4kN 

871mm 871mm 

2.4m 

wu=27.28 kN/m 

Vu-Diagram 

Vn-Diagram 
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EXAMPLE 6.4 

A simply supported with an effective span = 5.0 m (support width = 300 

mm) is carrying a working DL = 70 kN/m (including beam weight) and a 

working LL 80 = kN/m. MPaf c 25' = , MPaf y 400= , b= 300 mm, and d = 537 

mm. 

SOLUTION 

Calculate the factored (ultimate) loads; 
mkNwud /84702.1 ==  

mkNwul /128806.1 ==  

Total ultimate load equal to: 
mkNwu /21212884 =+=  

Calculate the ultimate shear force at the center of support, by considering the 

DL and LL on the whole beam: 
kNVus 5302/5212 == ,     

kNVns 7.70675.0/530 ==   

kNVuc 808/5128 ==    ,     kNVnc 7.10675.0/80 ==  

Connect these two points (center of support and mid span section) by a 

straight line as shown in the figure below. 

cnc VkNV == 3.1341000537.03.0
6

25
 

cnc VkNV = 1.672/  

From the similar triangles, calculate the distance from the mid span section 

to the point where cn VV = and equal to 115 mm,  

1

7.1063.134

5.2

7.1067.706

x

−
=

−
              mmmx 115115.01 ==  

through this distance cnc VVV 2/  where the minimum shear 

reinforcement should be provided. 

From the similar triangles also, calculate the factored shear force at the 

critical section (d from the face of support) 

537.015.05.2

7.106

5.2

7.1067.706

−−

−
=

− ndV
  ,    kNVnd 8.541=  

kNVsd 5.4073.1348.541 =−=  > kNdb
f

w
c

5.268.
3

'

=  
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So the maximum spacing between stirrups is less than d/2, then calculate the 

maximum shear strength of the shear reinforcement: 

kNVsd 5.407=   <   kNdb
f

w
c

537.
3

2

'

=  

So the maximum spacing between stirrups is d/4 or 300 mm (whichever is 

smaller) 

kNVsd 5.407=   <  kNdb
f

w
c

537.
3

2

'

=  

If #12 U stirrups is tried, the spacing equal to: 

mmmd
V

fA
s

s

yv
d 103103.0537.0

4075.0

34510226. 6

==


==
−

 

The required shear strength of the shear reinforcement (Vs) decrease with the 

distance from the face of support, and in such cases it is preferred to draw a 

spacing curve (relationship between the spacing and distance along the 

span). The relationship between (s) and (Vs) is not linear but curvilinear, and 

at least three points have to be determined.  

The distance between point (e) and the critical section = 2350 – 537 - 115 = 

1698 mm. The Vs diagram is a triangle whose base = 1698 mm and height = 

407.5 kN. To draw a curve along the span divide tis distance into equal 

distances, e.g. (four divisions), Table (6.2) shows the nominal shear strength 

(Vn), shear strength of the shear reinforcement (Vs), and spacing of the 

stirrups.  

 

Table (6.2) Spacing of stirrups versus the distance along the span 

Beam 

CL 

e c b a d Point 

2350 2235 1811 1386 962 537 Dist.(mm) 

106.7 134.3 236.1 338.0 439.0 541.8 nV 

-------- 0 101.9 203.8 305.7 407.6 sV 

-------- 53.7 53.7 53.7 53.7 53.7 sVMin. 

-------- ∞ 412 206 137 103 S (mm) 

269 269 269 269 134 134 Max. s 
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(a) Longitudinal section of the beam 
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(d) Spacing Curve 

 

EXAMPLE 6.5 

Check whether the one-way ribbed slab of Example (5.) need shear 

reinforcement or not. The slab is simply supported on an effective span 

of 4.0 m (c/c). MPaf c 20' =  and MPaf y 400= .  

 

   

SOLUTION 

The ultimate load on the slab =  
kPawu 94.1256.1)12.22(2.1 =++=  

The ultimate load on each rib = 12.94×0.6 = 7.76 kN/m  

d = 224 mm. 
kNVud 78.13)224.02/4(76.7 =−=  

kNVnd 37.1875.0/78.13 =  

The shear strength provided by concrete (Vc ) increased 10% due to the 

better load distribution in ribbed slabs. 

kNVc 37.18224.01.0
6

201.1
==  

No Min. shear reinforcement is required where cn VV  . 
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CHAPTER EIGHT 

STRENGTH IN COMPRESSION OF MEMBERS IN             

COMPRESSION AND BENDING 

 

 

8.1NTRODUCTION 

 

Column is usually a vertical reinforced concrete member used primarily to carry 

axial compression loads, but can also resist moment, shear, or torsion. Compression 

members with height less than or equal to three times its width called pedestals, 

Figure (8.1a) with cross-section larger than the column and is usually used to 

transmit loads from columns to the foundation.                

There are other structural members can be considered as compression members also 

as they resist compression loads and moments like some members in reinforced 

concrete frames, compression members in trusses, arches, and shells. 

 

In reinforced concrete members that carry compression loads, it is preferred that 

concrete carries most of the load because of its low cost compared with steel. Use 

of reinforcement is unavoidable in columns because of many reasons: 

i. Most columns are subjected to moments in addition to the compression load 

due to its continuity with other structural members, 

ii. Some columns are constructed inclined due to mistakes in the construction 

process, and 

iii. Use of steel with its high strength compared to concrete (≈10 times in 

compression and ≈ 100 times in tension) will reduce the required cross-

section. 

Columns are classified according to their heights/width ratio as: 

i. Short columns with relatively small height / width ratio, and its strength is 

controlled by the materials strength (fc
' and fy) and cross-sectional 

dimensions, and 

ii. Long (slender) columns with a relatively large height / width ratio, and its 

strength is controlled by the materials strength (fc
' and fy), cross-sectional 

dimensions, height, and boundary conditions. 

Columns are classified also according to the type of transverse reinforcement 

used to support the main vertical reinforcement as: 

i. Tied columns with square, rectangular, or circular cross-section and the main 

reinforcement is wrapped by the ties, Figure (6.1b), and  

ii. Spiral columns with square, circular, or polygonal cross-section with 

transverse reinforcement as spiral, Figure (8.1c). 
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There is other type of columns called composite column with steel sections as main 

reinforcement and with or without longitudinal bars, Figure (8.1.d).  
  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

8.2 BEHAVIOUR OF AXIALLY LOADED SHORT COLUMNS 

When a reinforced concrete column is subjected to an axial compression load, the 

strain over the whole cross-section is constant, and the strains in concrete and steel 

are equal, due to the perfect bond between the two materials. When the stress in 

concrete is less than (fc
’/2) both the concrete and steel behave elastically. Concrete 

and steel will share the applied external load: 

                                                                                     

stscc AfAfP .. +=                                                                                                 (8.1) 

Where fc =concrete compression stress, Ac = net concrete area = Ag - Ast, Ag = gross 

concrete area, Ast = total steel area, fs = compression stress in steel, using the 

relationship fs = nfc and substituting it in the above equation:  

 

tcstcc AfnAAfP .)( =+=                                                                                      (8.2) 

The expression between brackets equal to the equivalent transformed area (At)  

Equations (8.1 and 8.2) can be used to calculate the stresses in concrete and steel 

when the concrete stress is less than (fc/2), i.e., in the working or service conditions.  

t 

t 

M
a

x
. 
h

 ≤
 3

t 

(a) (b) 

Concrete Shell 

concrete 

Spiral 

Core or 

(c) (d) 

Ties 

Spiral 

Steel tube 

pipe 

Concrete 

Concrete 

Steel section  

Figure (8.1) Types of columns, (a) Pedestal, (b) tied column, (c) 

spiral column, (d) composite column.   

Ties 
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Due to creep and shrinkage of concrete, the following changes may take place: 

 

i. Stresses in concrete decreases and those in steel increase, and 

ii. Heavily reinforced columns subjected to long term loads and unloaded later, 

tension stresses in concrete and compression stresses in steel may be created.  

Therefore Equations (8.1 and 8.2) will not give the true stresses and the strength 

design method is adopted for this reason.  

When the external axial loads on a reinforced concrete column increased the steel 

stress reaches the yield strength (fy) before the concrete reaches its strength (fc
'). In 

this case the column will not reach its strength, because it will carry additional load 

till the concrete reaches its strength in compression, Figure (8.2).    
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Therefore the strength of an axially loaded column is the sum of the concrete 

strength [0.85fc
'(Ag-Ast

 ) and the steel strength (Ast×fy):  

 

                                                                               

                                                                      (8.3)   

this load is called yield strength of the column. Up to this point the behavior of both 

tied and spirally reinforced columns is identical, Figure (8.3), at this point also the 

concrete crushes and the main reinforcement buckles, Figure (8.4).  

P 

P 

Figure (8.2) Variation of the strains in concrete and steel for an axially 

loaded reinforced concrete column 

Load-strain curve for concrete 

Load-strain curve for the column 

Load-strain curve for steel 
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’
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A
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yststgcno fAAAfP .)(85.0 ' +−=

 

 



5 

 

When a spirally reinforced column reaches the yield point, the concrete shell 

outside the spiral crushes and separates from the column and this will lead to a 

reduction in the column strength and the main reinforcement will not buckle, Figure 

(8.4) due to the lateral support provided by the closely spaced spiral (50-75 mm).     

Before the column reaches the final failure, the longitudinal bars continue to carry 

compression stresses due to the behavior nature of steel, and this is accompanied by 

longitudinal compression strains leading to expansion of the concrete core (inside 

the spiral) creating outward radial stresses on the spiral and as a result the spiral 

exert radial compression stresses on the concrete core and increasing its strength 

more than that in Equation (8.3):   

 

ysspsyststgcno fAkfAAAfP ...)(85.0 ' ++= −                                                     (8.4)         

 

 
 

 

 

Where Asp = volume of spiral / unit length of the column, ks = factor = 1.5-2.5 with 

an average of 2.0, this means that the strength of spiral reinforcement at this stage is 

twice that of the longitudinal reinforcement. The increase in strength depends on 

the volume of the used spiral, Figure (8.3). From what is mentioned before, it looks 

that the spiral column exhibits ductility before final failure.  
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Figure (8.3) Comparison of tied and spiral column behaviour 
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8.3 Interaction of Bending Moment and Axial  

 

Axially or concentrically loaded reinforced concrete columns are rarely found in 

practice, since moments are present due to its continuity with other structural 

members, the action of wind and seismic forces, or forces acting on brackets or 

corbels. Even if the structural analysis reveals no moments on the columns, 

unavoidable construction mistakes may place loads outside the column centroid 

resulting in moments. Therefore, most reinforced concrete columns are subjected to 

compression and bending moments and called eccentrically loaded columns. The 

interaction of compression load and moment may be presented as shown in Figure 

Figure (8.4) Typical failure of reinforced concrete columns, (a) tied 

column, (b) spiral column 
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(8.5), either a compression load on the column centroid and moment, or a 

compression load at a distance e = M / P from the column centroid.        

The axial strength Pno in Figure (8.6) represent the column strength to compression 

load when it acts at the column centroid, i.e., the moment = zero, Equation (8.3). 

 

 

 

 

 

 

 

 

 

When the moment is small, the strain distribution is nearly constant, and the neutral 

axis lies outside the cross-section. When the moment increases, the neutral axis 

depth and the column axial strength decreases, Figure (8.6). The curve representing 

the relationship between the axial and bending strength of the column called 

interaction diagram. All points inside this diagram, represent the loads and 

moments that can be carried by the column, and those outside represent loads and 

moments causing failure. Any radial straight line from the origin, represent a 

constant ratio of moment to load (e) or a constant distance from the point of action 

of the load to the column centroid.  

The case of balanced failure (Mnb, Pnb) represents the load and moment at balanced 

strain condition. At this stage, crushing of concrete in compression and yielding of 

the tension steel occurs instantaneously. The balanced load (Pnb) act at a distance 

(eb=Mnb/Pnb) from the column centroid. In columns that are carrying compression 

loads essentially, this case of failure and the compression failure can't be avoided as 

in beams and slabs by limiting the reinforcement ratio to (ρ < ρb) and the case of 

failure is controlled by the load position and not by the reinforcement ratio. To 

compensate for compression failure, a small strength reduction factor is used (0.65-

0.75) more than that used in flexural members (beams and slabs). 

 

When a column is subjected to load (Pn >Pnb) and moment the compression strain 

reaches (0.003) before the yielding of the tension steel, i.e., compression failure, 

and in this case the neutral axis depth ( ∞> c > cb) and the eccentricity (eb > e > 0).  

 

When a column is subjected to load (Pn < Pnb) and moment the tension steel will 

reach yielding before the compression strain reaches (0.003) i.e., tension failure, 

and in this case the neutral axis depth ( cb > c > 0) and the eccentricity (∞ > e > eb).  

 

e=M/P 
P 

M=P.e 

P 

Figure (7.5) Equivalent eccentricity 
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The case when the compression stress resultant equal to the tension stress resultant 

is a state of pure bending, this point lies on the horizontal (M-axis) where (Mn = 

Mno, Pn = 0, and e = ∞), Figure (8.6).  
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There is another point that lies on the vertical (load-axis) below the zero point and 

represent the case of axial tensile strength (tensile strength of concrete = 0) and 

equal to: 
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Figure (8.6) Typical interaction diagram of a reinforced concrete column 
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 Pno
*=Ast×fy                                                                                                     (8.5) 

 

The interaction diagram represent clearly the behaviour of a reinforced concrete 

column, and is used for the analysis and design of of reinforced concrete column. 

To draw the interaction diagram, a number of points have to be determined by 

selecting a suitable values of the neutral axis depth and assuming that the strain in  

compression  = 0.003. Usually the interaction diagrams are drawn dimensionless so 

that it can be used for any dimensions, shape, and reinforcement ratios. 

 

8.3.1 Nominal axial Load Capacity noP  and ACI code Maximum Axial Load 

Capacity Pn(max.) 

As mentioned previously, the case of axial compression is rarely found in practice, 

and the point is (Pno) is hypothetical and used to construct the interaction diagram. 

Equation (8.3) represents the axial strength for the tied and spiral columns. The 

strength reduction factor that correspond to this state is =0.65 for the tied columns, 

and 0.75 for spiral columns. For the case of axial tension, the strength reduction 

factor = 0.9. 

Since the case of axial compression is rarely found in practice, a minimum value of 

eccentricity should be used. As a result of this eccentricity, the strength of the 

column will be reduced as recommended by the ACI: 

 

non PP  8.0=                                                                                                       (8.6a) 

non PP  85.0=                                                                                                     (8.6b) 

 

7.3.2 Balanced Strain Condition for Rectangular Sections 

Thee balanced strain condition is the point that separates the compression and 

tension controlled zones, Figure (8.6). This occurs when the strain at the 

compression face = 0.003 and the strain in the tension steel = yield strain (ԑy = 

fy/Es), Figure (8.7): 

d
f

c
y

b
+

=
600

600
 

bb ca .1=  

The resultant of the compression stresses on concrete equal to: 
bafC bc ..85.0 '

1 =                                                                                                                                (8.7) 

The resultant of the compression stresses on the compression steel equal to: 

 

                                                                                                                             (8.8) 

 

"'

2 . ss fAC =
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The effective stress in the compression steel when the compression steel reaches 

yielding equal to: 
'" 85.0 cys fff −=  

And if it does not reach yielding, the effective stress equal to: 
''" 85.0 css fff −=                                                                                                                   (8.9) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Where fs
' equal to: 

 

600
''

c

dc
fs

−
=                                                                                                   (8.10) 

The resultant of stresses in the tension steel equal to:  

ys fAT .=                                                                                                               (8.11) 

Using the equation of equilibrium of the loads in the vertical direction, the nominal 

balanced strength (Pnb) of the column can be calculated: 

 

  (8.12) 

 

021 =−−+ nbPTCC

TCCPnb −+= 21

Pnb 

y 

εs
 =

 f
y
/E

s 

0
.0

0
3
 

        cb        d-cb 
C

1
 

C
2
 

T
 

 

      eb 

x A
s 

h/2 h/2 

A
s'

  

Pnb 

b
 

Figure (8.7) Balanced strain condition in a rectangular column 
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The third equation of equilibrium (ΣM=0) about the centroidal axis can be used to 

determine the location of (Pnb):                                                                                     

)2/()2/()2/2/(. '

21 sbnb dhTdhCahCeP −+−+−=                                                               (8.13) 

 

EXAMPLE 87.1 

A rectangular column with b =300 mm, h= 500 mm, reinforced with six # 20 bars 

(three on each face) 60 mm from the each face. MPaf c 25' = and MPaf y 400= . 

Determine the points of change on the interaction diagram, point in compression 

and point in the tension failure zones. Consider the load acting on the major axis (x-

axis). 

SOLUTION 

1- Axial strength of the column Pno 

                                               

)85.0.(..85.0 ''
cystcno ffAbhfP −+=  

MNPno 901.3)2585.0400(1031463.05.02585.0 6 =−+= −  

MNPno 901.3=  

At this point, e = 0, Mn = 0, c = ∞, compression is dominant, i.e., 002.0=t , and ɸ = 

0.65. 
0,536.2901.365.0 === nno MMNP   

2- Pure bending ( ,0=nP non MM = ) 

The section is considered as a double reinforced section subjected to pure bending. 
TCC =+ 21  

yscsc fAf
c

dc
Abcf .85.0600)

'
(..1.85.0 ''' =−
−

+  

)2585.0600
06.0

(1031433.0)(85.02585.0 6 −
−

+ −

c

c
c  

400103143 6 = −
 

000625.0031.02 =−+ cc  

c=65 mm, a=55 mm 

MPafs 15.46600
65

6065' =
−

=  

MPaMfs 9.242585.02.46" =−=  

kNmMNbafM cn 6.144.1446.0)2/055.044.0(..85.0 '
1 ==−=

)06.044.0(9.24103143)'(. 6"'
2 −=−= −ddfAM ssn

mkNmMNM n .9.8.00891.02 == 
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mkNMno .5.1539.86.144 =+=  

 

mkNmkNMno .2.138.5.1539.0 ==  

0=nP  

3- Balanced strain condition, bcc = , nbn PP = , nbn MM = . 

  

 

MN

bafN bcc

428.1

3.0224.02585.0..85.0 '
1

=

==
 

ys fMPaf =
−

= 6.463600
264

60264'  

MNfAN yst 377.0400103143. 6 === −  

0= yF  

021 =−−+ nbtcc PNNN  

MNPnb 408.1377.0357.0428.1 =−+=  

002.0== yt   

    65.0=  

MNPnb 915.0408.165.0 ==  

Taking the moment of the three internal forces  

and the external load about the column  

centroid to find (eb): 

nb

b
P

dhTdhCahC
e

)2/()'2/()2/2/( '

21 −+−+−
=  

408.1

)06.025.0(377.0)06.025.0(357.0)2/224.025.0(428.1 −+−+−
=be  

mmmeb 239239.0 ==  

mkNM

mMNePM

nb

bnbnb

.7.2185.33665.0

.3365.0239.0408.1.

==

===


 

 

9.0,005.0017.0003.0
65

65440
003.0 ==

−
=

−
= 

c

cd
t

22426485.0

2646.0
600

600

==

==
+

=

b

y
b

a

mmdd
f

c

x 

Pnb 

0
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2
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3
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Figure (8.8) Balanced strain condition 

for example (7.1) 
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4- Point in the compression controlled region, for this region, c > cb, try c = 400 

mm. 

mma 34040085.0 ==  

 

MNfAC ss 357.075.378103143. 6"'

2 === −  

65.0

002.00003.0003.0
400

400440
003.0

=

=
−

=
−

==




c

cd
ts  

MPaEf sss 600003.0200000. ===   

MNfAN sst 057.060103143. 6 === −  

MNNNNP tccn 47.2057.0357.017.221 =−+=−+=  

mMNePM

mmme

nn .2519.0102.047.2.

102102.0
47.2

)06.025.0(057.0)06.025.0(357.0)2/34.025.0(428.1

===

==
−+−+−

=
 

mkNM

kNMNP

n

n

.7.1639.25165.0

1606606.147.265.0

==

===




 

5- Point in the compression controlled region , in this region c < cb, try c =120 

mm: 

 mma 10212085.0 ==  
MNbafC c 65.03.0102.02585.0..85.0 '

1 ===  

ys fMPaf =
−

= 300600
120

60120'  

MNfAC

MPafff

ss

css

263.075.278103143.

75.2782585.030085.0

6'''

2

''"

===

=−=−=

−
 

MNfAT ys 377.0400103143. 6 === −  

0= yF  

021 =−−+ nbPTCC  

MNPn 536.0377.0263.065.0 =−+=  

mMNePM

mme

me

nn .251.0468.0536.0.

468

468.0
536.0

)06.025.0(377.0)06.025.0(263.0)2/102.025.0(65.0

===

=

=
−+−+−

=

 

MPaf

MPaf

MNC

s

s

75.3782585.0400

510600
400

60400

17.23.034.02585.0

"

'

1

=−=

=
−

=

==
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9.0

005.0008.0003.0
120

120440
003.0

=

=
−

=
−

==




c

cd
ts  

mkNM

kNMNP

n

n

.9.2252519.0

4.4824824.0536.09.0

==

===




 

6- The case of axial tension, in this case the steel will resist all the external load: 

kNMNfAP ystno 754754.0400103146. 6* ==== −  

The neutral axis depth =c  and e = 0.  

It is possible to take more points to draw the interaction diagram more 

accurately as shown in the Table below. 

 

Table (8.1) Coordinates for the interaction diagram of Example (8.1) 

No. c 

mm 

a 

mm 

e 

mm 
nP  

kN 
nM  

kN.m 

  nP  

kN 
nM

kN.m 

1 ∞ h 0 3901 0 0.65 2536 0 

2 600 510 7 3738 26 0.65 2430 17 

3 500 425 51 3113 158 0.65 2023 102 

4 400 340 102 2470 251.9 0.65 1605.5 163.7 

5 334 284 150 1987 298.1 0.65 1291.6 193.7 

6 264 224 239 1408 336.5 0.65 915.2 218.7 

7 190 162 311 1010 314 0.808 816 253.7 

8 120 102 468 536 251 0.9 482.4 225.9 

9 65 55 ∞ 0 153.7 0.9 0 138.4 

10 --- --- 0 -754 0 0.9 678.6 0 

11 50 42.5 -512 -219 112.1 0.9 197.1 100.9 

 

8.3.3. Distributed Reinforcement  

When the moment acting on the column is relatively large, all or most of the 

reinforcement should be placed near the outer faces as in the previous example. 

When the moment is relatively small (small or zero eccentricity), the strain 

distribution is almost constant or nearly so and the reinforcement should be 

distributed uniformly across the outer edges of the cross-section. The strain in the 

intermediate bars is calculated using the strain compatibility. The method of 

analysis is similar to that of example (8.1).  

EXAMPLE 8.2 

In the previous example if two bars # 20 are added at the middle of the long sides, 

Figure (8.9), calculate the balanced eccentricity. 
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SOLUTION 

 
MNbafC bc 428.13.0224.02585.0..85.0 '

1 ===  

ys fMPaf =
−

= 6.463600
264

60264'
2  

MNfAC

MPafff

ss

cys

357.075.378103143.

75.3782585.040085.0

6'''

2

'"

2

===

=−=−=

−
 

ys fMPaf =
−

= 8.31600
264

250264'
3  

kNMN

fAC

MPa

fff

ss

css

6.60066.0

55.10103142.

55.10

2585.08.3185.0

6''

3

'

33

'

3

"

3

==

==

=

−=−=

−
 

MN

fAT ys

377.0

400103143. 6

=

== −

 

0= yF  

0321 =−−++ nbPTCCC  

MN

Pnb

414.1

377.00066.0357.0428.1

=

−++=
 

kNPnb 919141465.0 ==  

 

 

414.1

)06.025.0(377.0)06.025.0(357.0)2/224.025.0(428.1 −+−+−
=be  

 mmmeb 237237.0 ==  

mkNM

mMNePM

nb

bnbnb

.21733565.0

.335.0237.0414.1.

==

===


 

Figure (8.10) shows the interaction diagrams for the columns of Examples (8.1 and 

8.2), the difference is very small near the region of the balanced strain condition, 

while in the tension controlled zone, the column of Example (8.2) has larger 

bending strength than the column of Example (8.1), the Figure shows also the 

interaction diagram of the column of Example (8.2) rotated 90ᵒ, i.e., b=500 mm, 

and h = 300 mm. It can be noticed that the bending strength is reduced compared to 

that of Example (8.2). The Figure shows also the interaction diagram multiplied by 

the strength reduction factor (ɸ).  
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8.4 Lateral Reinforcement   

The transverse reinforcement in columns is either a ties with the same shape as the 

column spaced vertically, or continuous spiral. The transverse reinforcement has 

three functions: 

i. Fixing the main bars and keeping it in position inside the forms, 

ii. Prevent or retard the buckling of the vertical bars, and 

iii. Act as shear reinforcement. 

iv. The spiral reinforcement provides the column with additional strength that is 

lost by the separation of the concrete shell.                                                   
                

8.4.1Ties  

The ACI Code recommends the use of #10 ties when the diameter of the main 

reinforcement ≤ 32 mm, and #12 when the diameter of the main reinforcement ≥ 35 

mm or when the bars are arranged in bundles. It is possible to use deformed wires 

or welded wire fabric as a transverse reinforcement with equivalent area as the ties. 

The vertical spacing between stirrups in the vertical direction should not exceed:  

i. 16db, 

ii. 48dt, and 

iii. Least dimension (b) of the column. 

                                                                                                                             
 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

≥150 mm 150 mm 150 mm 

 

≤
1
5
0
 m

m
  

≥
1
5
0
 m

m
 

Figure (8.11) Arrangement of ties  
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8.4.2 Spiral Reinforcement  

The spiral reinforcement make the column retain its strength is spite of the large 

deformation before failure, i.e., the failure is ductile. The volume of the spiral 

reinforcement should be large enough to substitute the column the strength lost by 

separation of the concrete shell (Ag-Ach). Using the third term of Equation (8.4) and 

assuming ks =2.0 as an average, the strength contributed by the spiral reinforcement 

becomes:                                                          

   

(8.14 )                                                                                       

 

Where fyt = yield strength of the spiral ≤ 690 MPa, Asp = area of the spiral. If ρs is 

assumed equal to volume o spiral in one turn to the volume of concrete core (out to 

out of spiral) or ρs = (Asp/Ach), Equation (8.14) becomes: 

 

(.158)                                                                              ychsn fAP ..0.2 = 

Where Ach = area of the concrete core (out to out of spiral). When the concrete shell 

separated, the column will lose strength equal to:  

)(85.0 '
chgcn AAfP −=                                                                                       (8.16)  

 equating Equations (7.14 1nd 7.15), the spiral reinforcement ratio becomes: 

)(85.0..0.2 '
chgcychsn AAffAP −==                       

            (8.17)                                                                      )1(425.0
'

−=
ch

g

yt

c
s

A

A

f

f
    

  

To make the spiral strength more than the concrete shell, use 04.5 instead of 0.45 in 

the above equation: 

)1(45.0
'

−=
ch

g

yt

c
s

A

A

f

f
                                                                                       (8.18) 

Using the definition ρs = (Asp/Ach), it is possible to use Equation (8.18) to design a 

spiral: 

==
ch

sp

s
A

A
 

 

Substituting the volumes of the spiral and the concrete core, the above Equation can 

be written as follow: 

 

(8.19 ) 

spytn AfP .0.2=

sD

dDa

sD

dDa

c

spcsp

c

spcsp
s

.

)(4

)4/(

)(.

22

−
=

−
=






Volume of spiral in one turn 

Volume of concrete core out to out of spiral in a height s 
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Where Dc = core diameter (out to out of spiral), asp = cross-sectional area of the 

spiral, dsp = spiral diameter ≥ 10 mm, s =spacing c/c in the vertical direction. The 

clear distance between the spiral in the vertical direction should not be less than 25 

mm, not more than 75 mm, or maximum coarse aggregate size. 

  
                                                                                                                

                                                        

  

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

EXAMPLE 8.3 

 

A reinforced concrete circular column with D = 500 mm, Dc = 420 mm, fc
’=30 

MPa, and fy = 400 MPa. Design the necessary spiral. 

 

SOLUTION 
22 1963.04/)5.0( mAg ==   

Figure (8.12) Arrangement of spiral 

and longitudinal bars in reinforced 

concrete columns 

 

h 

Dc 

Ach=Л (Dc)2 / 4 

Ag=Л (h)2 / 4 
dsp 

s 

s 
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22 1385.04/)42.0( mAc ==   

014.0)1
1385.0

1963.0
(

400

30
45.0 =−s  

If a 10 mm diameter spiral is used (as = 79 mm2), using Equation (8.19) to calculate 

s: 

mmms

s

4.520524.0

.)42.0(

)01.042.0(10794
014.0

2

6

==

−
=

−

 

Use s = 50 mm, the clear distance between spiral in the vertical direction = 50 - ds = 

50 – 10 = 40 mm, within the limits mentioned before, > 25 mm, < 75 mm, and > 

max. coarse aggregate size. 

 

8.5 Limits on Reinforcement Ratio                  

 

The ACI Code limited the gross reinforcement ratio 0.01 ≤ ρg ≤ 0.08, where ρg = 

(Ast/Ag). The reasons for limiting the minimum reinforcement ratio are: 

i. To prevent sudden or brittle failure, 

ii. Providing minimum bending strength for the column, and 

iii. Reducing the influence of creep and shrinkage of concrete. 

 

If the area of the column is more than required for strength, the reinforcement 

ration should not be less than 0.005.   

The maximum limit of the reinforcement ratio is to satisfy the clear spacing 

requirements of bars: 

i. ≥ 1.5db, 

ii. ≥ 40 mm, and 

iii. (4/3) maximum coarse aggregate size.      

 

8.6 Analysis of Sections in Compression Controlled Region 

 

 When the nominal strength Pn  of a column exceeds the nominal balanced strength 

Pnb, e < eb, or when c > cb compression will dominant, i.e., the behavior of the 

member is close to that of a column than that of a beam. The strain in the tension 

steel [which may be compression if (e) is very small] is less than the yield strain. 

The interaction diagrams can be used for analysis and design. Whitney's method 

can be used also. 

 

8.6.1 Whitney Formula for Compression Failure Case 
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The method is suitable for symmetrically reinforced columns (As = As
'), in deriving 

this equation, the compression steel is assumed to reach yielding and a =ab .  

                                                                    

                                                                      (8.20) 

 

 

If  '. ddh −= , gsg AA /2 '= , bhAg = , and hd /= the above Equation can be 

rewritten as follow: 

                                                                               

                                                                               

                                                                      

(8.21) 

    

This equation is more suitable for design. 

 

EXAMPLE 7.4 

In Example (7.1) if the load is placed  

150 mm to the right of the y-axis,  

find the design strength. 

SOLUTION 

Since e = 150 mm < eb = 239 mm,  

it is compression failure and  

Equation (7.20) can be used.  

MNPMN

P

nb

n

408.1022.2

5.0
06.044.0

15.0

40010942

18.1)44.0(

15.05.03

255.03.0 6

2

==

+
−


+

+




=

−

 

This value is less than the exact value  

Pn = 1.989 MN (1.63% difference). 
65.0=  

MNPn 314.1022.265.0 ==  

MNM n 197.0314.115.0 == 
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Figure (8.13) Analysis of 

compression controlled 

sections 
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8.6.2 Analysis of Sections in Tension Controlled region   

When the nominal strength Pn  of a column is less than the nominal balanced 

strength Pnb, e > eb, or when c < cb tension will dominant, i.e., the behavior of the 

member is close to that of a beam than that of a column. The strain in the tension 

steel is more than the yield strain when the concrete reaches a compression strain 

=0.003. The interaction diagrams can be used for analysis and design. Whitney's 

method can be used also. 

 

8.7.2 Approximate Formula for Tension Failure Cases                                            

  

For symmetrically reinforced sections ((As = As
'), in deriving this equation, the 

compression steel is assumed to reach yielding:                                                                             

 

  


 +−−+−+−+−= deddmdededbfP cn /)/1)(1(2)/1(/1.85.0 ''2'''                                                                                           

(8.22)  

Where )/('' bdAs= , )/(bdAs= , )85.0( '

cy ffm = , and 2/)(' 'ddee −+= . 

       

EXAMPLE 8.5 

In Example (8.1) if the load is placed  

350 mm to the right of the y-axis,  

find the design strength. 

SOLUTION 

Since e = 350 mm < eb = 239 mm,  

it is tension failure and  

Equation (7.22) can be used.  
 

mme 540
2

60440
350' =

−
+=  

00714.0
440300

942' =


==  

 

82.18
2585.0

400
=


=m 

 

 

 

Nc2=0.337MN 

e = 350mm 

h=500mm 

b
=

3
0
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m
 

 +  

d=440mm 

Pn 

Figure (8.14)  Analysis of tension 

controlled sections   
. 

Nt =0.377MN 
Nc1=0.883MN 

c=163 mm 

εs' =0.00196 
0
.0

0
3
 

εs=0.0051 

d-c = 277 mm 

e = 350mm 
)]5.0

5.0

25.0
(

5.0

371.0235.1667.0
)5.0

5.0

25.0
([5.02085.00.2 22 −−


+−=

g

 

Pn=0.843 
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 −+−

=
440/540100714.0

44.03.02585.0nP  

 

 

  

kN

MN

851

851.0440/540440/601)(182.18(00714.02)440/5401( 2

=

=


 +−−+−+  

mkNmMNM n .298.298.035.0851.0 ===  

This value is 1% more than the exact value.  

 

8.7.3 Using the Interaction Diagrams or the Analysis 

 

In the analysis, the cross-sectional dimensions, and the area of steel are known or 

given, and the required unknowns are either: 

i. The design strength of the column  nP  if e is given, or 

ii. The load position if  nP  is given. 

 

EXAMPLE 8.6 

Solve Example (8.4) using the interaction diagram. 

76.0500/)60440(/)( ' =−=−= hdd  

e / h =150 / 500 = 0.3 
01256.0)500300/(3146 ==g  

Enter the diagram for 7.0=  with e/h=0.3 and 01256.0=g , and read Kn =0.52  

Enter the diagram for 8.0=  with e/h=0.3 and 01256.0=g , and read Kn =0.54 

Therefore Kn =0.532  

 

MNAfKP
Af

P
K gcnn

gc

n
n 995.115.025532.0, '

'
====  

EXAMPLE 8.7 

Solve Example (8.5) using the interaction diagram. 

76.0500/)60440(/)( ' =−=−= hdd  

e / h =350 / 500 = 0.7 

Enter the diagram for 7.0=  with e/h=0.7 and 01256.0=g , and read Kn =0.20  

Enter the diagram for 8.0=  with e/h=0.7 and 01256.0=g , and read Kn =0.24 

Therefore Kn =0.224  

kNPkNMNAfKP
Af

P
K ngcnn

gc

n
n 54684065.0,85084.015.025224.0, '

'
=======   
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EXAMPLE 8.8 

 

If a load of Pu = 650 kN is applied on the column of example (8.1), what is the 

eccentricity. 

 

SOLUTION 

 

76.0500/)60440(/)( ' =−=−= hdd  

267.0
15.02565.0

65.0
'

=


==
gc

u
n

Af

P
K


 

Enter the diagram for 7.0=  with 267.0=nK and 01256.0=g , and read e/h= 0.6  

Enter the diagram for 8.0=  with 267.0=nK  and 01256.0=g , and read e/h= 0.65 

e/h =0.63, e = 0.63×500 =315 mm. 

 

8.7 Design of Rectangular Reinforced Concrete Columns 

 

The strength design for columns can divided into three categories, Figure (8.15): 

i. Sections subjected to axial compression, or axial compression and small 

bending moments, (e < emin), (0.8Pno < Pn < Pno) in this case the design is 

according to Equations (8.6a  and 8.6b), 

ii. Compression controlled region (emin < e < eb ), (Pnb < Pn < 0.8Pno) and the 

section in this case is less than that required for the balanced strain condition, 

and 

iii. Tension controlled region (eb < e < ∞ ), (0 < Pn < Pnb) and the section in this 

case is more than that required for the balanced strain condition. 

The following equations can be used as a first estimate of the required area of the 

cross-section for tied and spiral columns respectively: 

 

)(4.0 '

yc

u
g

ff

P
A

+
=                                                                                                  (8.23) 

)(5.0 '

yc

u
g

ff

P
A

+
=                                                                                                  (8.24) 

If the section is subjected to large bending moment, a higher cross-section is 

required. 
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8.7.1 Design for the First Region 

 

 EXAMPLE 8.9 

A reinforced concrete tied column is subjected to Pd = 1200 kN and Pɭ =1400 kN. 

Choose a suitable dimension for the column (square) MPaf c 30' = , MPaf y 400= , and 

03.0g  

 عمود خرساني دائري   (21.9)الشكل 
 .  (13)مسلح حلزونياً 

h 

ds 

Pn 

h
 

e 
Pn 

h 

ds 

Pn 

e 
Pn e' 

 عمود خرساني مربع  (22.9)الشكل 
 .  (13)مسلح حلزونياً  
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Figure (8.15) Cases for Design of Reinforced Concrete Columns 
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SOLUTION 

 

kNPu 368014006.112002.1 =+=  

2190476.0
)40003.030(4.0

68.3

)(4.0 '
=

+
=

+
=

ygc

u
g

ff

P
A


 

mmmAhb g 468468.0 ==== , try b=h=450mm, 

kNPn 5.566165.0/3680 =  

].)1(85.0[8.0]..).(85.0[8.0

].)(85.0[8.08.0

''

'

.)(max

yggcgygggggc

yststgcnon

ffAfAAAf

fAAAfPP

 +−=+−

=+−==
 

]400)1(3085.0[)45.0(8.06615.5 2 +−= gg  

03.00252.0 =g  

22 5111)450(0252.0 mmAst ==  

Since the column is axially loaded, the strain and compression stress is constant 

across the cross-section, and it is preferred to distribute the bars along the four 

faces. Use 12 # 25 bars (four bars on each face) = 5892 mm2 , Figure (8.16). Ties 

diameter = #10 mm (Bar dia. < 32mm), with spacing's: 

i.  16 db =16×25 = 400 mm, 

ii. 48 dt =48×10 = 480 mm, or 

iii. b = 450 mm. 

Therefore use 3 # 10 mm @ 400 mm c/c, Figure (8.16). 

Clear spacing between bars = mm783/)253302402450( =−−−  

This value is: 

i. > 40 mm, 

ii. > 1.5 db = 1.5×25 = 37.5 mm, or 

iii. (4/3) Max. coarse aggregate size, (4/3) 20 =27 mm. 

 

  
 

 

 

 

 

 

 

 

 

 

Φ 10 @ 400 mm c /c  

12 Φ 25 mm  

h
 =

 4
5
0
 m

m
  

 

b = 450 mm   

Figure (8.16) Arrangement of steel for Example (7.9) 
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8.8.2 Design for Region two (Compression Controlled) 

 

EXAMPLE (8.10) 

A reinforced concrete square column is subjected to Pd = 1250 kN, Pɭ = 1000 kN, 

DLM =150 kN.m, LLm = 100 kN.m,  MPaf c 30' = , MPaf y 400= , choose a suitable 

dimensions and reinforcement to make  025.0g . 

 

SOLUTION  

mkNM

kNP

u

u

.3401006.11502.1

310010006.112502.1

=+=

=+=
 

mmmPMe uu 11011.03100/340/ ====  

19375.0
)400025.030(4.0

10.3

)(4.0 '
=

+
=

+
=

ygc

u
g

ff

P
A


 

mmmAhb g 440440.0 ====  

Try b=h=450 mm, since e = 110 mm < (eb   h/225 mm) it is a compression failure 

case.  

mkNMM

kNPP

un

un

.1.52365.0/340/

2.476965.0/3100/

==

==




 

Equation (7.20) can be used to find the necessary area of steel:  

 

 

 

 

 

 

 

 

 

 

 

Try b=h=475 mm, since e = 110 mm < (eb   h/237.5 mm) it is still a compression 

failure case.  
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fhb
P

2' 4137 mmAs =

2827441372 mmAst ==

025.00409.0)450450/(8274 ==g
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  Use 10#28=6160 mm2, use five bars on each face, Figure (8.17), 

Clear spacing between bars = mm564/)284302402475( =−−− , this is within the 

required limits of clear spacing: 

i. > 40 mm, 

ii. > 1.5 db = 1.5×25 = 37.5 mm, or 

iii. (4/3) Max. coarse aggregate size, (4/3) 20 =27 mm. 

Ties diameter = #10 mm (Bar dia. < 32mm), with spacing's: 

i.  16 db =16×28 = 448 mm, 

ii. 48 dt =48×10 = 480 mm, or 

iii. b = 475 mm. 

Therefore use 3 # 10 mm @ 400 mm c/c, Figure (8.17). 

 

 

 

 

 

 

 

 

 

 

 

 

8.8.2 Design for Region Three (Tension Controlled) 

 

In this case there is a change of behavior from a column failing in compression to a 

beam failing in tension, and therefore an increase of the strength reduction factor 

from 0.65 (when ԑt =0.002) for tied columns and 0.75 for spiral columns to 0.9 

(when ԑt =0.005). 

 

EXAMPLE (8.11) 

A reinforced concrete rectangular column is subjected to Pd = 500 kN, Pɭ = 400 kN, 

DLM =200 kN.m, LLm = 150 kN.m,  MPaf c 25' = , MPaf y 400= , choose a suitable 

dimensions and reinforcement to make  03.0g . 

2' 3079 mmAs =

2615830792 mmAst ==

025.00273.0)475475/(6158 ==g

Φ 10 @ 400 mm c /c  

10 Φ 28 mm  

h
 =

 4
7
5
 m

m
  

 

b = 475 mm   

Figure (8.17) Arrangement of bars for Example (8.10)  

(10.9 ) 10 
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SOLUTION  

mkNM

kNP

u

u

.4801506.12002.1

12404006.15002.1

=+=

=+=
 

mmmPMe uu 378387.01240/480/ ==== 

2

'
083783.0

)40003.025(4.0

24.1

)(4.0
m

ff

P
A

ygc

u
g =

+
=

+
=


 

,25.1 bh =  

,083783.025.1 2 =b  b = 259 mm, h = 324 mm. 

Assume b = 400 mm , h = 500 mm.  

Since e = 378 mm > (eb   h/250 mm) it is a tension failure case. Try a strength 

reduction factor φ =0.7,  
 

mkNM

kNPn

n .6867.0/480

17717.0/1240

=

=
 

Since it is tension failure, the tension steel will reach yielding, if the compression 

assumed to reach yielding also, the tensile force T will approximately equal to C2, 

and in this case Pn = C1 

4.02585.0..85.0771.1 ' === abafP cn  

a = 208 mm, the couple created by (T and C2) and (Pn and C1) will equalize each 

other and the area of the tension steel can be found: 

 

)063.0437..0(400]2/208.025.0378.0[771.1

)(.)]2/2/[ '

−=+−

−=+−

s

ysn

A

ddfAaheP
  

As = 2746 mm2, 4#32 on each face = 3216 mm2. ρg = 0.0322. To check the strength 

use Equation (8.22) 
 

82.18)2585.0/(400,152.0434/66/,295.1434/562/

5622/)66434(378,0185.0)434400/(3216)/(

''

''

======

=−+=====

mddde

mmebdAs
 

 

  


 +−−+−+−+−= deddmdededbfP cn /)/1)(1(2)/1(/1.85.0 ''2'''   

  295.1)152.01)(182.18(0185.02)295.11(295.110185.0434.04.02585.0 2 +−−+−+−+−=nP

kNMNPn 1917917.1 ==  

If the equilibrium method is used, c =275 mm , Pn=1.919MN, ϵt = 0.00173, and ɸ = 

0.65, ɸPn = 1.247 MN > 1.24MN  

Clear spacing between bars = mm553/)323302402400( =−−−  (O.K.) 
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When the bending moment is high, it is preferred to use rectangular section, with its 

width parallel to the axis of rotation. 

  

 8.10 Circular Spirally Reinforced Columns                 

ط بجدران أو قواطع  العمود منفردا، أي غير محا في الاماكن التي يكون فيها عمل عادةالمقاطع الدائرية تست

مثل بعض الأبنية العامة وأماكن وقوف السيارات. كما أنها تستعمل أيضا عندما تكون اللامركزية قليلا حيث  

 0.75قاومة = أنها تظهر صلابة ومطيلية أكثر من الأعمدة المطوقة، ولهذا السبب يكون عامل تخفيض الم

من الأعمدة يقل عند زيادة اللامركزية وذلك  مطوقة. ولكن الفرق بين سلوك النوعينللاعمدة ال 0.65مقابل  

 لكون سلوك الاثنين يقترب من سلوك العتبة.

مقاومة العمود للحمل المحوري أو عندما تكون اللامركزية قليلة تكون أكثر من العمود المطوق وبنفس المقطع  

 التسليح. ومساحة 

سلح حلزونيا يعملان بكفاءة اكثر مما في العمود المطوق ة والتسليح  في العمود الممما تقدم يتبين أن الخرسان

 خاصة عندما تكون اللامركزية قليلة. 

 

لتحليل أو لتصميم الأعمدة الدائرية يمكن الاستعانة بمخططات التداخل الموجودة في بعض المصادر. كما  

للخرسانة في   للتحليل، مع اعتبار أن أقصى انفعال فق الانفعالات ومعادلات توازن القوى يمكن استعمال توا

( وأن معدل الاجهاد في الخرسانة في منطقة الانضغاط ثابت ويساوي أيضا  0.003الانضغاط يساوي أيضا ) 

('85.0 cf  عند ذلك يتطلب معرفة خواص قطعة الدائرة مثل المساحة وبعد المحور الوسطي للقطعة عن .)

 (.22.9مركز الدائرة، الشكل )

 

فعندما يكون الانضغاط سائدا، تكون   Whitney.كما يمكن استعمال بعض المعادلات التقريبية التي اشتقها  

 مقاومة الاضغاط الاسمية كما يأتي: 

 

  

                                                           (8.29) 
 

 

قطر الدائرة التي تمر فيها   =sdقطر المقطع )أو عرضه(،     = h مساحة المقطع الكلية،  =gAأن   حيث 

طر القضبان المستعملة. ق –)الغطاء الخرساني الصافي(   2 –مراكز القضبان = قطر المقطع )أو عرضه(  

عند اشتقاق هذه المعادلة اعتبر أن تسليح الانضغاط سيصل الى الخضوع عند وصول المقطع الى مقاومته، 

 كما أن المعادلة تعطي نتائجا تقريبية عندما تكون مقاومة الخضوع للتسليح وكذلك نسبة التسليح كبيرة. 

 لانضغاط الاسمية كما يلي: أما عندما يكون الشد سائدا، فيمكن حساب مقاومة ا 

 

 

                     (8.30) 
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(. لتحليل أو لتصميم مثل  23.8بعض المقاطع المربعة توضع فيها القضبان على محيط دائرة أيضا، الشكل )

مكن استعمال المعادلات التقريبية  يمكن استعمال توافق الانفعالات ومعادلات توازن القوى، كما يهذه المقاطع 

 مقاومة الانضغاط الاسمية كما يلي:  فعندما يكون الانضغاط سائدا تكون Whitney.التي اشتقها  

 

 

                                                                     (8.31)     
 

 

 

 

 غاط الاسمية كما يلي: أما عندما يكون الشد سائدا، فيمكن حساب مقاومة الانض 
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                     (8.32) 

 

 ( 8. 12مثال ) 
 

uPkNمحمل بحمل معامل مقداره  (mm 500×500عمود خرساني مربع المقطع )  ( يبعد  (1500=

mm) 250)  .20'عن المحور الوسطي للمقطع cfMPa yfMPaو   = . صمم الحلزون وجد 276=

 مساحة التسليح اللازمة لو رتبت القضبان على محيط دائرة.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 الحل  

)]5.0(
..67.0

)5.0([.85.0 22' −−+−=
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hfP
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cn



 مقطع  دائري  
  

 مقطع مربع 
 مسلح حلزونياً  

h 

ds 

Pn 

h
 

e 
Pn 

h 

ds 

Pn 

e 
Pn e' 

  

  

 عمدة الخرسانية المسلحة حلزونياً  الأ (23.8)الشكل 
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mmDc 420402500 =−=  

0263.0)1
1385.0

25.0
(

276

20
45.0

1385.04/)42.0(

25.05.0

22

22

=−

==

==

s

c

g

mA

mA



 

sdmmلو افترض قطر الحلزون   =10 (samm  : s( لحساب 19.9وباستعمال المعادلة )  )279=

mmms

s

0.28028.0

.)42.0(

)01.042.0(10794
0263.0

2

6

==

−
=

−

 

وهذه mm= 10-28 18) وهذه القيمة قليلة لان المسافة الصافية بين الحلزون في الاتجاه العمودي ستكون )

 ( للحلزون: mm 12(. يجرب قطر )mm 25أقل من )

mmms

s

4004.0

.)42.0(

)012.042.0(101134
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وهذا الرقم يقع ضمن الحدود المذكورة  mm28 سافة الصافية بين الحلزون في الاتجاه العمودي = وتكون الم 

 سابقا. 

 المقاومة الاسمية اللازمة  
MNPn 0.275.0/5.1 = 

mmds 37125122402500 =−−−=  

اط أم شد، لذلك تستعمل المعادلتين  (  غير معلومة فلا يمكن التنبؤ بحالة الفشل هل هي انضغbeبما أن قيمة ) 

 للانضغاط والشد ويعتمد ايهما أكبر من مساحة التسليح: 

 
                                                          

               
 

 

stAmm =27703 

 أما اذا كان الشد سائدا، فيمكن حساب مقاومة الانضغاط الاسمية كما يلي: 

 

    g=0274.0  وstAmm stAmm  ، اذن الانضغاط هو السائد وتعتمد قيمة 26850= =27703  .

16257856تستعمل   2 =mm :المسافة الصافية بين القضبان تساوي . 
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mm4816/)2516371( =−                                             

4mm >  40 mm 48   ،mmdbة ضمن المحددات الثلاثة وهي: ذه القيمه 5.375.1 ، و < 48 =

mm48
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4
  .المقاس الأكبر للركام الخشن   

 

 


