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CHAPTER ONE
INTRODUCTION: PROPERTIES OF CONCRETE AND STEEL
1.1 Concrete, Reinforced Concrete and Prestressed Concrete

The materials used in most of the structures are, wood, steel, reinforced
concrete, precast concrete, and prestressed concrete. Other lightweight materials
like aluminum and polymers are used lately. The material that is most widely
used in civil engineering structures is reinforced concrete due to its properties as
compared with other materials like relatively low cost, moldability, durability,
and rigidity.

Reinforced concrete is a composite material composed of concrete that has large
compressive strength but small tensile strength, and embedded reinforcing bars
in concrete which provide the required tensile strength of the member. The
reason that make concrete and steel working effectively are:

I- Bond or the interaction between the reinforcing bars and the surrounding
concrete, that prevent slipping or sliding of the two materials relative to
each other.

Ii- The concrete mixtures after its hardening, has low permeability that
prevents rusting of the reinforcing bars.

iii- The coefficient of thermal expansion of concrete is (10-13x10%/C°) and
(12x10%/C°) for steel make the difference between the stresses created
due to temperature variation small and can be neglected.

For these reasons, reinforced concrete is suitable for use in ordinary buildings,
bridges, tanks, retaining walls, tunnels, conduits, and other structures.

1.2 CONCRETE AND REINFORCED CONCRETE

Ordinary concrete is usually made from certain proportions of cement, fine
aggregates, coarse aggregates, water and sometimes mineral or chemical
admixtures that provide the fresh or hardened concrete with certain properties.
After hardening in the forms around the reinforcing bars, it is called reinforced
concrete. It is possible to get concrete with different strengths by changing the
proportions of the four constituent materials, using certain types of cement, or
using certain curing process. The factors that make concrete widely used as a
construction material are:

i- Its moldability when it is fresh,

Ii- Relative resistance to fire,

iii- Resistance to environmental conditions, and

iv- Availability and cheapness of the constituent materials except cement.



The compression strength of concrete is relatively high as in natural rocks
which make it suitable for use in members subjected to compression forces like
columns and arches. On the other hand, concrete is a brittle material and has low
tensile strength (8-20% of its compression strength) like natural rocks. This will
limit its use in structural members subjected completely to tension like ties, or
partially as in slabs and beams. To compensate this, steel reinforcement that has
high tensile strength compared to concrete can be used to in places subjected to
tensile stresses. The steel reinforcement is usually bars with circular section and
lugs or protrusions on the external surface to increase the bond between the bars
and concrete.

1.2.1 CEMENT

The bonding material used to manufacture concrete is called hydraulic cement
because it requires water to react with and harden. The materials used to
manufacture cement are, limestone and clay. There are many types of cement as
shown in Table (1) below.

1.2.2 AGGREGATES

The aggregates occupy about 70-80% of the total volume of concrete, and for
this reason it has a great effect on the properties of fresh and hardened concrete.
Therefore, the aggregates must have a good strength, durability, and resistance
to the environmental conditions. Its external surface should be free from silt,
loam, and organic matters that may weaken the bond with the cement paste. It
should be ascertained that the aggregates are not reactive which react with the
cement and cause expansion of concrete and consequently disintegration.

Aggregates is classified as fine (sand with size < 5.0 mm) and coarse with size >
5.0 mm like gravel or any other crushed stones. Maximum aggregate size is
limited by ACI Code (26.4.2) to:

I- One fifth of the least distance of the lateral forms (columns, walls, and
beams web),

ii- One third the slab depth, and

Iii- Three quarter the clear spacing between bars.

Concrete made with gravel or crushed stones result in a density of 23 kN/m?,
and when reinforced with steel gives a density of = 24 kN/m?,

There is also lightweight concrete which is made from natural or manufactured
lightweight aggregates that result in densities ranging from 8 to 19 kN/m?3,



Table (1) Types of Cements

Designation | Cement type Uses
Type | Normal Pavements, floors, reinforced concrete buildings, bridges,
tanks, reservoirs, pipe, masonry units, and precast concrete
products.
Type IA Normal, air- | As Type | and produce concrete with improved resistance to
entraining freezing and thawing
Type Il Moderate Protection against moderate sulfate attack is necessary
sulfate
resistance
Type 1A Moderate As Type Il, improved resistance to freezing and thawing
sulfate
resistance,  air
entraining
Type Il | Moderate heat Large piers, large foundations, and thick retaining walls
(MH) of hydration and
moderate sulfate
resistance
Type Il | Moderate heat As Type Il (MH) and produce concrete with improved
(MH)A of hydration, resistance to freezing and thawing
moderate sulfate
resistance, air
entraining
Type HI High early | Structure must be put into service quickly. In cold weather,
strength reduction in the length of the curing period
Type IHIA High early | As Type Ill, improved resistance to freezing and thawing
strength, air-
entraining
Type IV Low heat of | Massive concrete structures, such as large gravity dams
hydration
Type V High sulfate | Concrete exposed to severe sulfate environments —
resistance principally where soils or ground waters have a high sulfate
content
1.2.3 WATER

Water is one the important constituent of concrete, without it the hydration and
hardening processes will not occur. Mixing and curing water should be clean,
free from acids, alkalis, salts, organic matter, or any other material that may
affect concrete or steel. In general, the drinking water is suitable for use in
mixing and curing.

Water cement ratio is one the most important factor that affects the concrete
strength, Fig. (1.1). The amounts of mixing water is more than that necessary for
the hydration process by at least 10% so that the fresh concrete mix has an
acceptable workability and take the shape of the formwork. Curing of concrete

4




IS necessary to substitute or prevent the mixing water from evaporation so that
the hydration process will continue.
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Figure (1.1) Effect of water cement ratio on the flexural
and compression strength of concrete

1.2.4 ADMIXTURES
Admixtures are either:

a. Chemical or
b. Mineral materials.

It is added to the four concrete constituents before or after mixing to change
or improve some of the concrete properties during the fresh or hardened
state. The effects of admixtures can be summarized as follow:

I- Improve the workability without increasing water, or decrease water and
keep the same workability,

Ii- Retard the initial setting process, and therefore decreasing the heat
resulting from the hydration process. This is necessary also when casting
in hot weather.

iii- Accelerating the strength development when casting in cold weather, and
calcium chloride is usually used.

iv- Increase the compression strength, like the silica fume.

v- Increase the resistance of concrete to freezing and thawing, where the
concrete member may be subjected to frequent freezing and thawing. This
Is achieved by either using air entrained cement or some chemicals that
create air voids inside the concrete mass.

5



1.3 WORKABILITY

To get a concrete with good quality, adequate amount of water should be used to
make the fresh concrete consistent, easy to finish, moldable, and surround the
reinforcing bars. If excessive amount of water is added, the concrete becomes
porous, weak, and exhibit high shrinkage. There are many factors that affect the
workability of concrete:

I- Amount of water,

Ii- Aggregate to cement ratio,

Iii- Coarse aggregate to fine aggregate ratio, and
Iv- Maximum aggregate size.

There are many methods for measuring the workability of concrete indirectly:

i- Slump test,

1i- Compacting factor test,
li- Kelly ball test, and

iv- V-B test.

1.4 QUALITY CONTROL FOR CONCRETE

As mentioned before, concrete is composed of four constituents and its
properties in the fresh and hardened state depend on the quality and quantity of
these constituents in addition to the curing regime after casting.

Before any concrete member (slabs, beams, columns, and foundation) a concrete
compression strength must be specified. This strength is that of a concrete
cylinder (150 mm in diameter and 300 mm in height) at the age of 28 days after
casting. A trial mix design is usually conducted in the laboratory to get the
specified compression strength by carefully selecting the proportions of the four
concrete constituents. In the laboratory, the used materials are very small and
their quality, gradation, weights, and the curing regime (temperature and
humidity) can be controlled not like the he large quantities in the site. Therefore,
it is expected that the quality and strength of the concrete in the site is less than
those in the laboratory. For these reasons, there should be a quality control
measures for the quality and quantities of the used materials, mixing method,
transportation method, casting, compaction, and curing regime so that the
specified compression strength can be obtained.

The ACI Code (26.12.1.1), recommends that a strength test (represent the
average of (two concrete cylinders 150300 mm) or (three cylinders 100x200
mm) must be conducted for the following cases:

I- For a certain type of concrete once a day for each 155 m?® of concrete
or once for each 450 m? of slabs and walls.
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1i-  Inany project, if the number of tests is less than five, tests should be
conducted on five random concrete batches or five tests if the number
of batches is less than five.

iii-  1f the volume of concrete is less 40 m3, there is no need to conduct any
test, if the supervision authority proves that a satisfactory strength can
be obtained according to ACI Code (2.12.26).

The ACI Code (3.12.26) considered that the concrete quality is acceptable in the
following cases:

I- If the average of three consecutive tests equal to or greater than f

ili-  Any compression strength test (average of two cylinders) is not less
than the required compression test by no more than 3.5 MPa if the
compression strength is not greater than 35 MPa, or 0.1f; if the
compression strength is greater than 35 MPa.

1.5 MECHANICAL PROPERTIES OF CONCRETE

Since concrete is composed of four constituents, its properties depend on the
proportions and properties of these four constituents mainly the water/cement
ratio. There are many methods for designing concrete mixtures of certain slump
and strength and can be referred to in the concrete technology textbooks.

1.5.1 Compression Strength

In the last decades, it was possible to make concrete with compression strength
up to 100 MPa or even more. However, such concrete has many limitations on
its use. In ordinary reinforced concrete buildings, the compression strength may
range from 20 to 40 MPa. In prestressed and precast concrete, higher strength is
required and may range from 30 to 60 MPa. In multistory buildings, It is
preferable to use concrete of high strength in the columns.

Compression strength usually measured by means of cylinders or cubes, and the
cylinder will be used in this course as per the ACI Code.

The compression strength of a cylinder is that for a (150x300 mm) 28 days after
casting under a certain rate of loading. The ACI Code (19.2.1.1) limited the
strength of concrete according to the type of building as shown in the Table
below.

Table (2) Concrete strength for various Buildings and Types of

Concrete
Type of building Concrete fe
Minimum strength | Maximum strength
General Normal and 17 No limit
lightweight
Moment resisting | Normal weight 17 No limit




frames and some Lightweight 17 350
structural walls

(1 Higher compression strength may be used, if it is demonstrated that the lightweight
members have strength and rigidity equal to or more than those constructed using
normal weight concrete of the same strength.

The behavior of concrete and the stress-strain relationship depends on the
compression strength, age, rate of loading, cement and aggregates properties,
and the type and size of the tested specimens. Figure (1.2), shows some stress-
strain relationships of concrete with various strength tested concentrically at the
age of 28 days.

It can be noticed from the Figure that the peak strength is attained at a strain of
0.002 to 0.0025 for normal concrete, and the maximum strain range from 0.003
to 0.008. The ACI Code (22.2.2.1) limit the maximum strain by 0.003.

Poisson's ratio, range from 0.11 for high strength concrete to 0.21 for low
strength concrete.

1.5.2. Modulus of Elasticity

The modulus of elasticity of concrete depends on the compression strength,
cement and aggregates properties, rate of loading, size and type of the tested
specimen. Figure (1.3) shows a typical stress-strain curve for concrete. The
figure shows the initial modulus, secant modulus, and tangent modulus. The
secant modulus represents the slope of the straight line from the origin to about
50% of the compression strength and usually used as a modulus of elasticity for
concrete according to the ACI Code. Paragraph (19.2.2.1) of the ACI Code,
define the modulus of elasticity for concrete with density ranging from 1450 to
2550 kg/m?3 as follow:

E, =0.043w25, . (L.1)

Where E. and f. are in MPa, and w. is the concrete density in kg/m?3. For normal
weight concrete whose density about 2300 kg/m?3, Equation (1.1) becomes:

E, = 4750/F, (1.2)
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Figure (1.3) Definition of the Elastic

It was found that the above equations give modulus of elasticity values more
than the true values by around 29% when the compression strength values
ranges from 40 to 80 MPa for normal and lightweight concrete. The following
equation gives a fair estimation of elastic modulus for normal concrete with
compression strength between 20 to 80 MPa and lightweight concrete with
compression strength between 20 to 60 MPa:

E, = (33204 f, + 6895)(w, / 2300)+5 (1.3)

1.5.3 Tensile Strength

Tensile stresses are created in reinforced concrete members due to the shear
forces, bending moments, and torsional moments. The tensile strength of
concrete is very small (< 20%) of its compression strength. This low tensile
strength causes cracks initiation even in the working conditions and causes
redistribution of the stresses and internal forces.
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There are three methods to measure the tensile strength of concrete:

I- Direct tensile strength,
1i-  Splitting tensile strength (Brazilian test), and
lii-  Flexural strength.

The following Table show the range of the three tensile strength tests.
Table (3) Range of Tensile Strength of Concrete for different tests

Type of strength Normal Concrete Lightweight Concrete
Direct tensile strength 0.25-0.4\f; 0.17-0.25Vf,
Splitting strength 0.50-0.67f, 0.33-0.50
Flexural strength 0.67-1.0Vf: 0.50-0.67f;
1.5.4 Creep of Concrete

Creep is the increase in strain under sustained stress; these strains are inelastic or
plastic strains and increase with time at a reducing rate. The mechanism of creep
or this plastic flow may be due to one or more of the following:

I- Crystal flow of the aggregates and the hardened cement paste,

1i-  Plastic flow of the hardened cement paste surrounding the aggregates,
iii-  Decrease of the voids or pores in the concrete mass, and

iv-  Water flow from the cement paste due to stresses and evaporation.

The factors that increase the creep of concrete, are; (a) increase of the
water/cement ratio, (b) increase in temperature and decrease of humidity, (c)
loading the member in an early age, (d) increase of the load duration, (e)
increase in stresses, (f) decrease in the volume/surface ratio of the member, and
(9) type of cement and aggregates.

Creep does not decrease the capacity of strength of the reinforced concrete
members during the service conditions, but causes redistribution of stresses in
concrete and steel. The followings are the effects of creep on reinforced concrete
members:

I- Increase in the long-term deflection of flexural members (slabs and
beams),

1i-  In reinforced concrete columns, it causes increase of the stresses on
steel and decrease of the stresses on concrete, and

iii-  In prestressed members, it causes reduction of the prestressing forces
with time.
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Figure 1.4: Deformation in a loaded concrete cylinder: (a) specimen
unloaded, (b) elastic deformation, (c) elastic plus creep deformation, and
(d) permanent deformation after release of load.

1.5.5 SHRINKAGE OF CONCRETE

As mentioned before, to get a workable fresh concrete the amount of mixing
water should be more than that necessary for the hydration process. After the
concrete cast, the excess water (not hydrated with cement) starts evaporating,
resulting in shrinkage of concrete. This shrinkage could be attributed to the
capillary action of water remaining in the pores.

The concrete shrinkage increases with, (a) water / cement ratio, (b) cement
content. (c) temperature and decrease with humidity, (d) surface / volume ratio,
and (e) aggregates porosity. Figure (1.4) shows some shrinkage time
relationships.

Shrinkage creates mostly compressive stresses in steel and tensile stresses in
concrete leading to cracking. Shrinkage causes increase in long time deflection
in flexural members, which decrease with the presence of steel, it causes also
reduction in the prestressing forces in prestressed concrete members.
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Figure (1.5) Variation of shrinkage strains with time for normal and
lightweight concrete



1.5.6. TEMPERATURE CHANGE

Concrete like other materials, expands with temperature and contract with the
temperature decrease. This temperature change creates internal stresses (tension
and compression) depending upon the temperature gradient between the top and
bottom surface. The treatment of temperature change is similar to that of
shrinkage. The designer should take these stresses into consideration, such as
providing expansion or contraction joints to decrease the internal stresses.

1.6 REINFORCING STEEL

The axial forces (tension and compression), shear forces, bending moments, and
torsional moments create tensile stresses in concrete members; since the tensile
strength of concrete is small compared with compression it will limit the
strength of concrete members. When steel with higher tensile strength (100
times than the tensile strength of concrete) is added to concrete and high
ductility, the reinforced concrete member becomes stiffer and more ductile than
the unreinforced member and capable of resisting high tensile stresses. In
reinforced concrete members, concrete in the compression zone carries the
compression stresses and steel in the tension zone carries the tensile stresses.
Steel reinforcement, are used also in compression zones of columns and beams
to carry compression stresses and in beams (in the form of stirrups) to carry
diagonal tensile stresses created by shear and torsion that lead to shear failure.

The reinforcing steel are present in the form:

i- Bars that are used in all reinforced concrete members,

ii-  Wire fabrics that are used in flat, curved, and folded surfaces,
lii-  Wires that are used in prestressing members, and

iv-  Strands that are used in prestressing members.

The ordinary reinforcing bars are usually deformed with lugs or protrusions to
increase the bond and decrease the slippage with the surrounding concrete.
Bars diameter usually range from 6 to 57 mm, Figure (1.6).

(U

Figure (1.6) Typical reinforcing bars
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1.6.1 STRESS-STRAIN CURVES
The factors that determine the properties of the reinforcing bars are:

I- Yield strength fy,
li-  Ultimate strength f,, and
li-  Elastic modulus Es.

The elastic modulus is usually constant for all the reinforcing bars, Figure (1.7)
and equal to 200 GPa (200000 MPa), as in ACI Code (20.2.2.2). The
prestresssing steel has elastic modulus slightly less than that for the ordinary
reinforcing steel.

The yield strength of the reinforcing bars is limited to 520 MPa for flexural
members (slabs and beams) and 400 MPa for bars used shear and torsion.
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CHAPTER TWO
DESIGN METHODS AND REQUIREMENTS
2.1 INTRODUCTION

Reinforced concrete is a composite, nonhomogeneous material and the
properties and behavior of the two materials (concrete and steel) differs from
each other completely. Concrete is a nonhomogeneous material strong in
compression with nonlinear behavior, weak in tension, cracked during the
service conditions, shrink due to evaporation of water, and creep when subjected
to sustained load. While the reinforcing steel, is a homogeneous material with a
high compression and tensile strength and high ductility also. Therefore, it is
not possible to use the methods and formulas used in mechanics of materials (for
homogeneous materials) to find the strains, stresses, and deformation in the
elastic or plastic stages, since reinforced concrete is not homogeneous, elastic, or
completely plastic even when the external loads are small. For these reasons,
most of the analysis and design methods used used for reinforced concrete
members are empirical, i.e.; methods and formulas based on experimental reslts
or results demonstrated with experience and time. These formulas, methods, and
specifications are usually gathered in a code revised from time to time when
theoretical or experimental results are available. This code contains also
minimum and maximum limits for some factors used in the design related to the
behavior and safety of the reinforced concrete members or the the structure as a
whole.

To design a cross-section, reinforced concrete member, or structure the nature
and magnitude of the acting loads and its influence on the structure should be
determined. These effects, may be a shear force, bending moments, torsional
moments, and axial compressive or tensile forces. The methods of structural
analysis are usually used to determine these internal forces.

After this stage, the structural design is begin which include choosing a suitable
cross-sections and finding the necessary area of steel.

2.2 LOADS

The loads acting on structures in general, can be classified into three categories,
dead, live, and environmental loads.

2.2.1 DEAD LOADS

Sometimes called static or constant loads represent the weight of the structural
member or any other load acting on the structure permanently. It is so called,
since its magnitude and direction of action is constant. It represents also, the
finishing loads like, plastering, tiles, cement mortar under the tiles, and any
other permanent electrical or mechanical fixtures. The magnitude of these loads
can be determined after a preliminary design when all the cross-sections and
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dimensions of the members are assumed. After analyzing the structure and
determining the internal forces, these assumed dimensions can be fixed or
revised depending on the structural design.

2.2.2 LIVE LOADS

As the name implies, these are the loads acting on the structure and represent the
occupants of the structure, in roads and bridges it represent the traffic loads. It is
called live since its magnitude, duration, and direction of action is variable. Its
magnitude and place should be chosen to create maximum effects on the
structure; these effects could be shearing force, bending moment, torsional
moment, and axial forces individually or in combination.

Values of these loads are usually recommended in codes of practice.
2.2.3. ENVIRONMENTAL LOADS

It represents the environmental effects such as, wind pressure, snow and rain
loads, earth pressure, hydrostatic pressure, forces created by temperature
change, force created by shrinkage and creep of concrete, forces created by
differential settlement, and seismic forces.

2.3. ELASTIC AND STRENGTH DESIGN METHODS

There are two methods for designing reinforced concrete members. The elastic
or working stress design method (working or service conditions) was used since
1900 to the late 1950's. After that the strength design method (ultimate
conditions) was developed.

In the elastic design method, the member is designed for the working or service
conditions under the effect of working or service loads (true value of the loads).
In this stage, the stresses in concrete and steel should not exceed certain
allowable limits (about 40-45% of their strength) so that the deformations at this
stage are small and the structure is serviceable. The methods used for the
analysis and design are those used in mechanics of materials for elastic
homogeneous materials.

Using this method does not give reliable results for the following reasons:

I- The magnitude and distribution of the stresses created due to shrinkage
cannot be known accurately,

li-  With time creep occur and result in redistribution of stresses in
concrete and steel,

lii-  Since the stress-strain relationship of concrete is not linear, it is not
possible to determine the factor of safety between the ultimate (failure)
and working conditions, and

iv-  Since the limitation is on the concrete and steel stresses, it is not
possible to determine the difference between the applied loads.
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The second method is the strength design method. In this method, the working
(service) loads are increased by a factors to get the ultimate or factored loads.

The dimensions of the cross-sections are chosen so that its design strength equal
to or greater than the required strength obtained from the structural analysis.
When calculating the design strength, the strength of the materials are assumed
equal and f, for steel in tension and compression, and to f; for concrete in
compression and the nonlinear relationship between stress and strain in concrete
should be taken into account.

Since 1971, the majority of the ACI Code was devoted to the strength design
method, and the working stress design method can be used as alternative
method.

Even when the strength design method is used, the conditions of the members
comprising the structure must be checked against the limiting serviceability
criteria, like deflection, cracking, and vibration. These limitations take into
account the aesthetic, functional aspects of the members, and comfort to the
occupants.

2.4. SAFETY PROVISIONS

All the structural members or structures must be designed to resist loads more
than that expected in the normal conditions. The reason is that there are many
factors that let the designer takes into account the increase in the design loads
that may occur. These factors can be summarized as follow:

I- The true value of the loads may differ from that used in the design,

1i- The true loads distribution may differ from that used in the design,

iii- The magnitude and distribution of the loads acting on the structure
during construction, like construction materials, and forms cannot be
estimated accurately,

iv- Changing the function of part or the whole structure may differ from the
originally assumed loads,

v-  The unavoidable assumptions and simplifications used for the analysis of
the structure may give effects of the actual loads differ from the actual
effects, and

vi- The true behavior of the structure may differ from that assumed during
analysis and design.

Based on these factors, all the codes of practice recommended what is called
load safety factor which is usually greater than 1.0. These factors represent the
ratio of the ultimate (factored) load to the working (service) load, and this factor
differ with the type of load (dead, live, wind, etc.). The value of these load
factors depends on statistical analysis and to some extent on experience.

S. A. Al-Ta'an



2.4.1 ACI CODE LOAD FACTORS OF SAFETY

The ACI Code load factors are used for working (service) loads (dead, live, and
environmental). After analyzing a structure under the action of these factored
(ultimate) loads, the internal forces or (U = required strength) can be found
which may include, V, shear force, P, axial force, M, bending moment, and T,
torsional moment. The subscript (u) is used to denote that the action is ultimate
or (factored).

Table (2.1) shows the load factors, it can be noted that the loads that can be
estimated accurately like dead loads has load factors less than those with more
variation like live load.

Using these factors means that there is a probability of (1/1000) that the true
ultimate loads can exceed the calculated ultimate loads.

Table (2.1) Summation of the factored loads to determine the required
strength (U) according to the ACI Code

Load state I Factored load I

Dead load U=1.4D

Basic state U=12D+1.6L

Dead load and fluid pressure U=1.4D + 1.4F

Dear load, fluid pressure, temperature change, jU=1.2(D+F+T)+1.6(L+H) +
creep, shrinkage, and differential settlement 0.5(L;orSorR)

Dead load, live load, snow load, or rain and jU=1.2D + 1.6 (L, or Sor R)
wind load + (1.0L or 0.8W)

Dead load, wind load, live load, snow or rain U= 12D + 1.6W + 1.0L +
0.5(L;or SorR)

Dead load, live load, and seismic load or snow JU= 1.2D + 1.0E + 1.0L +
0.2S

Dead load, wind load, and earth pressure U=0.9D + 1.6W + 1.6H

Dead load, seismic load, and earth pressure U=0.9D + 1.0E + 1.6H

D = Dead loads, E = Load effects of seismic forces, F = Loads due to weight and
pressures of fluids, H = Loads due to weight and pressure of soil, L = Live
loads, L = Roof live loads, R = Rain loads, S =snow loads, T = cumulative
effect of temperature, creep, shrinkage, differential settlement, and shrinkage.
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Example 6:

The frame in Example (1) is subjected to a uniformly distributed working dead
and live loads equal to 15 KN/m and 20 kN/m respectively and a concentrated
working wind load of 25 kN at point (f). Find the ultimate load and moment that
should be carried by one of the side columns.

Solution:

According to the ACI Code, the frame must be analyzed for four loads
combinations (vertical and horizontal loads):

(@) 1.4DL

(b) 1.2DL + 1.6LL

©1.2DL+ 1.6WL+ 1.0LL

(d) 0.9DL + 1.6 WL

Figure (a) below shows the factored loads, reactions and the moments created
from the vertical DL only.

f wu =21 kN/m d
[ T T I T T I T T T 1T 1T 1T I i T 1T
e

X 1491 14.91 7 [y

2;—» 4.26 % 4.264— /;; ¢
! ! f

59.93 182.57 59.93
(a) 1.4DL
Figure (b) below shows the factored loads, reactions and the moments created
from the vertical DL and LL.
f wu = 50 kN/m d

[ T T 1T 11Tt r 11 il i iy rrrrrrrd
e
X > 35.5 35.5 7 [N

/A b S
T T T

142.7 434.7 142.7
(b) 1.2DL+1.6LL
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Figure (c) below shows the factored wind load, reactions and the moments
created from the wind load.

40 kN
“T 36.75 66.5 36.75

/;;j— 10.5 19 4—/& 10.5 4—/;;
1 1 1
9.722 Zero 9.722

(c) 1.6WL

Figure © below shows the load combination (1.2DL+1.6WL+1.0LL) and
reactions and the moments created:

w, =38 kN/m
40 kN
OKNT T T T T T T T T T T T T T T T T T T T T T 1]
w977 “e6.5 63.73.

/5/— 2.9 19 42;/ 18.1 42;/
1 i i

98.730 330.372 118.174

¢ =1.2DL+1.6WL+1.0LL

Figure (d) below shows the load combination (0.9DL+1.6WL) and reactions and
the moments created:

wu =13.5 kN/m
[T T T T I T T PP 1T PP P T T T T T ]

40 kN —>
T 46.34
27.16 63 T

/g— 7.8 kN 19 kN % 13.2 kN %
74 T/ 74

T 117.37 kN 48.ZL kN
28.81 kN

d = 0.9DL+1.6WL

7
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Therefore, the column must be designed three times:
1- For a factored axial load and moment of 142.7 kN and 35.5 kN.m
respectively, and
2- For a factored axial load and moment of 118.174 kN and 76.3 KN.m
respectively.
3- For a factored axial load and moment of 48.25 kN and 46.34 kN.m
respectively.

2.4.2. STRENGTH REDUCTION FACTORS

The dimensions of the structural members are chosen so that their design
strength (¢S,) equal to or greater than the required strength (U). The design
strength is a reduced value of the nominal (ideal or theoretical strength) (S,).

The nominal strength is calculated according to the assumptions and
requirements recommended by the ACI Code and subscripted by (n).

The factors that make the design strength less than the nominal strength are as
follow:

I- The true strength of the materials especially concrete may be less than that
adopted in the design if the quality control measure is poor.

Ii- The dimensions of the constructed structural members may differ from
that fixed by the designer or that fixed on the structural drawings, and this
depend on the site supervision.

1ii- The reinforcing bars may not be placed in the right positions.
iv- Accuracy of the design calculations and assumptions, and empirical
equations used may not give the true value of the strength.

Therefore, if any structural member is subjected to shear force, bending
moment, axial forces, or torsional moment, the design strength must equal to or
greater than the required strength as follow:

oVa=>V,
oM, > M,
oPn > Py
¢Tn =Ty

The left hand side represent the design strength and the right hand side the
required strength which is found from the structural analysis under the action of
the factored loads, ¢ is the strength reduction factor which is usually less than
1.0. There are other factors in addition to those mentioned above that effect the
value of ¢, these are:

S. A Al-Ta'an



I- Type of expected failure, whether in concrete or steel,
ii-  Importance of the member (column, beam, slab, etc.), and
li-  Type of the building (school, warehouse, residential building, etc.).

Table (2.2) shows the strength reduction factors as recommended by the ACI
Code.

Using these factors give a probability of (1/100) that the strength of a member is
less the design strength. Therefore failure, whether due to increase in loads or
strength reduction may occur with a probability of;
1 y 1 1
100 1000 100000

Table (2.2) Strength reduction factors according to ACI Code

Type of strength

Members where tension is controlled

Members where compression is controlled,
members with spiral reinforcement,

Other members

Shear or shear and torsion

Bearing on concrete

Bending, compression, shear, and loading on
plain concrete

2.5. DUCTILITY IN REINFORCED CONCRETE BUILDINGS

Ductility in reinforced concrete buildings is one of the safety measures that
should be provided. Ductility means, maintaining strength while sizeable
deformation occurs, (deflection, curvature, rotation, cracks, etc.) the failure
occurs slowly and gradually like rubber and steel. On the contrary, brittle
materials fail suddenly with small deformation before failure, like rock and
concrete, i.e.; failure occurs without warning.

Ductility is considered important for many reasons:

I- In statically indeterminate structures, ductility allows stressed parts to
retain its strength in spite of the large deformation, and let parts with

9
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smaller stresses take additional loads. This means that failure of one
section or member does not lead to failure of the whole structure.
Structures located in seismic areas, or may be subjected to explosion,
the structure should have a capacity to absorb energy by providing the
members with reasonable ductility.

Beams and slabs with large ductility, will give warnings before the
member reach its ultimate or failure stage. These warnings could be
wide cracks, large deflection, and curvatures and rotation which lead
to evacuation of the building or reducing the applied loads.

10
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CHAPTER THREE
Analysis by the Working Stress Design Method
(Elastic design method)

3.1 Introduction

In chapter two, it was mentioned that there are two methods for analysis and
design of reinforced concrete structures; the working stress design and
strength design method. Whichever method is used, the structural member or
the structure should be:
I. Durable, i.e.; sustain the environmental conditions without reduction in
strength or needs maintenance frequently,
Ii. Have adequate strength when subjected to overloads (ultimate loads),
and
Ii.  Serviceable, the deflection and cracks are within the limits set by the
codes of practice.

In this chapter, a brief description of the working stress design method will
be presented.

3.2. Fundamental Assumptions
The working stress design method (straight line or elastic design method) for
flexural members (slabs and beams) depends on four basic assumptions:

I. Plane section before bending remains plane after bending, which means that
the strains are proportional to the distance from the neutral axis. This
assumption will be used also in the strength design method.

1i. Stresses and strains are elastic and proportional to each other in concrete and
steel. For concrete this assumption is valid up to about 50% of f. and for
steel up to the yielding point.

iii. Tensile strength of concrete is neglected if cracks initiate at the tension face.
This assumption will be used also in the strength design method.

iv. There is a perfect bond between the reinforcing bars and the surrounding
concrete. There is no slip between concrete and steel and the strains in
both are equal. This assumption will be used also in the strength design
method.



3.3. Stresses in Reinforced Concrete Members

3.3.1 Axial Compression in the Elastic State

Consider the reinforced concrete column in Fig. (3.1) from the fourth
assumption, the strain at any point in concrete €. = fc /E; equal to the strain in
steel € = f5/E;,

|

A:AC:AS

e=A/H=
EC:AclH =
€5:A3/H

Figure (3.1) Reinforced Concrete Column subjected to Axial Load
L= (3.1)

fo and fs are the stresses in concrete and steel respectively, Eq.(3.1) can be
rewritten as follow:

fs=n.f. (3.2)

n is called the modular ratio = Es / E. (usually rounded to the nearest integer).
Consider the column of Fig. (3.1) subjected to a load (P), this load will be shared
by concrete (P¢) and steel (Ps). The load carried by concrete equal to:

Pc=fcAc =fc(Ag'Ast) (33)
Where f is the concrete stress, and A. is the net concrete area and equal to:

Ac = Ag- Ast (3.4)
Aq = gross concrete area (bxh), and A = total area of steel. The load carried by
the steel reinforcement equal to:
Ps =fs Aqt (3.5)



Adding equations (3.3) and (3.5) to get the total load carried by the column:
P =f.A; +f; Ay (3.6)

Substituting (fs) from Equation (3.2) into Equation (3.6), the following Equation
IS obtained:

P :chc+ nchstsz (Ac+ nAst) =fc(Ag ‘Ast+ nAst) :fc [Ag + (n = 1)Ast] :cht (3 . 7)
Where A is the transformed area and equal to:
At:Ac+nAst:Ag+(n'1)Ast (3.8)

The transformed area A; can be interpreted as the area of a fictitious concrete
cross section, Fig. (3.2).

(n—1)Agt
.
i | E
73 | T
Actual section Transformed section Transformed section

(a) (b) (c)

Figure (3.2) Gross and transformed are, (a) reinforced concrete section, (b)
transformed section, (c) transformed section

Example 3.1

A reinforced concrete column 350x450 mm reinforced with four bars (¢ = 25
mm) and subjected to a compressive axial load of P = 1.5 MN. f; = 30 MPa and
fy = 420 MPa. Calculate the stresses and strains in concrete and steel.

Solution 450 mm
E, = 4750,/30 = 26017 MPa _ [ °
200000 = v
=n= — 769 ~8
"= 26017 2
L o

At = 4x 491 =1964 mm?
A =350 x 450 —1964 =155536 mm?



A =155536 +8x1964 =171248 mm? = 0.171248 m?

Using Equation (3.7) to calculate the concrete stress:
fo=P/A =15/0.171248=8.76MPa

& = fo | E; =8.7625907 = 0.000338 << 0.002

P. = A f, =0.155536x8.76 =1.362MN  (90.8%)

fs =nf, =8x8.76 = 70.1MPa

&g = g/ Eg =70.1/200000 =0.000351 < gy = fy | Eq =400 /200000 = 0.002
P, = Ay fs =0.001964x70.1=0.138MN  (9.2%)

Example 3.2

For Example 3.1 calculate the load and the steel stress that can be carried by the
column if the concrete stress = 13.5MPa.
Solution

P=f.A =13.5%x0.171248 = 2.311MN
fg =nf, =8x13.5=108MPa

3.3.2 Axial Compression in the Ultimate State

Strength is the maximum load that the structure or member will carry. When the
load on the column increases; the stresses and strains in concrete and steel will
increase also. When the concrete reach a strain of 0.003 (stress = f.), crushing of
concrete  will occur and the steel will reach a stress of
(fs=Esxe,=200000x0.003=600 MPa) exceed the yield strength f, = 400 MPa.
Therefore; the maximum load that will be carried by the column equal to:

Py =0.85f.A; + Aqt fy (3.9)
Example 3.3

Calculate the maximum load that the column of Example (3.1) will carry?.

Solution
P, =0.85f. A, + Ay fy =0.85x30x0.155536+ 0.001964 x 400 = 4.752MN

P, =0.85 fc'Ac =0.85x 30 x 0.155536 =3.966 MN (83.5%)
Ps = At fy =0.001964 x 400 = 0.786 MN (16.5%)

3.3.3 Axial Tension in the Elastic Uncracked State

When the tension force is small; the stresses and strains are also small (less than
the tensile strength of concrete) and both materials will behave elastically.
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The tensile force will be carried by concrete and steel:
P=1fotAc + Ast s = fotAc + Ase(nfer) = fer (Ac +nAgt) (3.10)

Where fs = tensile stress in concrete.

Example 3.4

Calculate the stresses in concrete and steel for the column of Example (3.1), if it
IS subjected to a tensile load of 500 kN.

Solution
foe =P/ A =0.5/0.171248 = 2.92MPa < f, = 0.62+/30 = 3.4MPa (uncracked member).

P, = A fot =0.155536x 2.92 = 0.454MN (0.908)
fg =nfy =8x2.92=23.4MPa
Py = At fs =0.001964x 23.4 = 0.046MN  (0.092)

Example 3.5

What is the maximum tensile load that the member of Example (3.1) will carry
before the concrete crack?

Solution

for = fr = 0.62+/30 =3.4MPa

P, = A f =0.155536x 3.4 = 0.5288MN

fg =nfy =8x3.4=27.2MPa

P, = Ay f =0.001964x 27.2 = 0.0534MN
P, =P + P, =0.5288+0.0534 = 0.5822MN
P, =90.8%

P, =9.2%

3.3.3 Axial Tension in the Ultimate State

When the tension force increases; the stresses and strains are also increases and
when the tensile stress in concrete exceeds the tensile strength, the concrete will
crack and the steel will carry the entire tensile load. The maximum tensile load
that the member will carry equal to:

Pnt = AStfy (311)



Example 3.6

What is the maximum tensile load that the member of Example (3.1) will carry?

Solution

Pnt = Ast fy =0.001964 x 400 = 0.7856 MN

3.4. Analysis of Rectangular Uncracked Reinforced Concrete Sections

Figure (3.3) shows a rectangular single reinforced section at the onset of
cracking stage which is before the working or service conditions. The cracking
stage starts when the tensile stress at the tension face equal to the modulus of
rupture f, =0.62\f;. If the reinforcing steel is neglected, the neutral axis for
rectangular section is located at the mid depth of the section (h/2), and the
stresses can be calculated using the bending of elastic homogeneous sections,

f:Mfy (3.13)
By substituting f=f, and M = M, (cracking moment) can be found as follow:
foxI
- (3.14)
Yi

l; = moment of inertia of the gross section (ignoring the steel) = b.h%/ 12 and y; =
distance from the N.A. to the tension face, which is in this case = h/2.
Substituting 14 and y; in Eq.(3.14), the cracking moment for rectangular section
becomes:

_fixbh® _ bh?

T 12(h/2) " 6 (3.15)
L2
As
> 1
(@) (b) (c)

Figure (3.3) Strain and stress distribution in uncracked section, (a) cross-section
dimension, (b) strain distribution, (c) stress distribution.
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If the reinforcing steel is to be taken into account in calculating the moment of
inertia, the steel has to be transformed into equivalent area of concrete, Figure
(3.4).
For steel in the compression zone the equivalent area of concrete = (2n-1)As ,
and for steel in the tension zone = (n-1) As

. b=300mm

(2n-DAS/2 (2n-1)As'/2
v 4

e P
& & /
£ &
Q o
=2) >
N B (0-DA (n-DA
AS 2 2
o) —+ R R
v 5024 5024

() (b)

Figure (3.4) Uncracked reinforced concrete section, (a) reinforced concrete
section, (b) transformed section

To find the neutral axis, use principle of the moment of area for the whole
section about the compression face:

o _bh?/2+@n-DAd +(n-DAd (3.16)
bh+(2n—1A +(n-1)A

The moment of inertia of the uncracked transformed section I equal to:

I, =bc®/3+b(h-c)’/3+(@2n-DA (c—d)*+(n-DA(d-c)* (3.17)

EXAMPLE (3.7)
A rectangular single reinforced section with b = 300 mm, h =450 mm, d = 390

mm, As = 4#20 = 1256 mm?. f;=20 MPa, and f, = 276 MPa. Calculate the
cracking moment, the steel, and concrete stresses.

SOLUTION

E.= 4750 [f.=21243MPa
n =200000/21243=9.4~9

Using Eq.(3.16) to calculate the neutral axis depth:
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. 300(450)% /2 + (9 —1)1256 x 390
300x 450+ (9 -1)1256
The modulus of rupture of concrete equal to:
f, =0.62y fo =2.8MPa
The compression stress in concrete f; equal to:
- c.f, _ 236x2.8 _3.1MPa

(h—c) 450-236
To calculate the stress in the tension steel, calculate the concrete stress at that
level (fes ) and then multiply it by (n)

236mm

(d-c) (390 — 236)

Calculate the moment of inertia of the uncracked transformed section | use
Equation (3.8):

I, =300(236)° / 3+ 300(450 — 236)° / 3+ 9 x 1256(390 — 236) = 2.53x10° mm*
=2.53x10°m*
_foxl,  2.8x0.00253
“ " (h—c) (0.450-0.236)
If the tension steel is neglected, ¢ = h/2 = 0.45/2= 0.225m, and 14=h.h%/12 =
0.3x0.45%/12=0.3x0.45%/12= 0.002278 m* (10% less than ly), the cracking
moment equal to:
M fox1, _ 2.8x0.002278
" (h/2) (0.450/2)
value).

=0.0332MN.m =33.2kN.m

=0.0284MN.m = 28.4kN.m (15% less than the exact

3.4 Flexural Stresses in Beams in the Elastic Cracked Stage

Figure (3.5) show a beam in a cracked state, the tensile force carried by the
tension steel equal to:

T = A fg = AN fes) = fes (NA) (3.18)

The subscript (s) is added to f. to refer to the steel location. The other form of
the formula relates (n) to (As) instead of the stress, this means that the force in
the tension steel equal to the concrete stress at the steel level (f) multiplied by a
fictitious area of concrete (nAs). This area is called the transformed area, i.e.;
area of steel (As) transformed to equivalent area of concrete (nAs).

When the transformation process is done, the cross-section become
homogeneous, i.e.; composed of one material which is concrete and the formula
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for the bending of elastic homogeneous sections can be used for the analysis of
the cross-section.

3.5. Allowable Service Load Stresses

During the working (service) conditions, the stresses should not exceed the
following limits:
i. In concrete, the compression stress f; < 0.45f;
il. In steel, the tensile stress f; < /40 MPa for f, < 345 MPa, and
ii. fs < 165 MPa for f, > 400 MPa, and
iv. f; = 0.5 f, <200 MPa for steel in flexural members with diameter < 10
mm in one-way slabs with span < 3.6 m.

For steel in compression zones, the steel stress assumed equal to (2n) times the
concrete compression stress adjacent to the steel, but < allowable fs.

3.6 Analysis of Rectangular Cracked Reinforced Concrete Sections

When the moment acting on the section exceeds the cracking moment M., and
the tensile stress at the tension face exceeds the tensile strength of concrete and
the section becomes cracked section. In this case the concrete in tension zone
will no longer carry any stress and the whole tensile stresses will be resisted by
the tension steel. The stress distribution in this case is as shown in Figure (3.4)
below. The neutral axis depth is determined by equating the moment of the area
under compression to that under tension:

bc? /2 =nAg(d —c) (3.19)

h!

NAs 7 Vol

Figure (3.4) Stress Distribution in Cracked Reinforced Concrete Section
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Solving the above equation for ¢, the moment of inertia of the section and the
stresses in steel and concrete can be found.

Example (3.8)

The section of Example (3.7) is subjected to a bending moment of 60 kKN.m,
determine the concrete and steel stresses.

Solution

Since the moment is greater than the cracking moment found in Example (3.7),
the section is cracked. Find the neutral axis depth:

bc? /2 =nAg(d —c)
3002 /2 = 9x1256(390 — C)

c=138mm
It =bc3/3+nAg(d —c)? =0.3(0.138)% /3+9x0.001256(0.390 — 0.138) >
~9.8x10"*m*
f,=Mxc_0006x0138 g \iba < AlLf, —9MPa
ot 0.00098
f,=nMx(d=€) _0.06x(039-0.138) _, 45 qp1ps _ Al £, —140MPa.
It 0.00098
Problems

P.3.1. A circular reinforced concrete column 400 mm
diameter reinforced with six bars (¢ =25 mm, ‘
Aq = 6x491= 2946 mm?). The column is subjected to a D=400mm
compressive axial load of P = 1.5 MN. f; = 35 MPa and - 6# 25

fy = 400 MPa. Calculate the stresses and strains in '

concrete and steel.

P.3.2. For P.3.1,, calculate the load and the steel stress that
can be carried by the column if the concrete stress = 0.45 f. =15.75MPa.
P.3.3. For P.3.1., calculate the maximum load that the column will carra/?.
P.3.4. A square reinforced concrete column with 40C mm

a side length of 400 mm reinforced with eight bars ® ®

(§ =20 mm, Ag = 8x314 = 2512 mm?). E

Calculate the stresses in concrete and steel, 8 4# 20

if it is subjected to a tensile load of 500 kN. o
. =30 MPaand f, = 276 MPa. et
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P.3.5. What is the maximum tensile load that the column of P.3.4. will carry
before the concrete crack?.

P.3.6. What is the ultimate tensile load that the column of P.3.4. will carry?.
P.3.7. A rectangular single reinforced section with | b=300mm

b =300 mm, h =500 mm, d =440 mm, As = 4#20

= 1256 mm?, f;=25 MPa, and f, = 276 MPa. Calculate
the cracking moment, steel, and concrete stresses

two times, by neglecting the tension steel (lg), and taking
the tension steel into account (l).

P.3.8. The section of P.3.7. is subjected to a bending As
moment of 65 kN.m, determine the concrete and steel
stresses.

440 mm
=500mm

d=
h

12
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Flexural Analysis of Beams using the Strength
Design Method

4.1 Fundamental Assumptions
I. Plane section before bending remains plane after bending,
1i. Stress- strain relationship for concrete and steel are known,
Iii. Tensile strength of concrete is neglected,
Iv. There is a perfect bond between the reinforcing bars and the
surrounding concrete.

A
L?:;»-(;é/:H:l:L:LA:\a::

&c
fC &c
A 1 -
fc <+ - fC
>
< I/I
7
Il
/! /
& J/
== — fs 'Q —3 fs /—gs —3 fs
\ 4 LI ________________

(d) (e)

Figure (4.1) Variation of strains and stresses with increasing loads, @
Beam elevation, (b) cross-section, (c) uncracked stage, (d) working stage, (e)
ultimate stage

4.2 Equivalent Rectangular Stress Block
The actual stress distribution in compression is replaced by an equivalent

rectangular stress block, with average stress of 0.85f, and depth (a = B1xc):

For f, <28MPa p, =0.85, for each increase of 6.89 MPa in f_, 3, is decreased
by 0.05:

1 =0.85-0.00725( f. —28) >0.65 (4.1)



Table (4.1) Variation of Alwith f,

fe

<28

30

35

40

50

95

>55.6

Bl

0.85

0.836

0.799

0.763

0.690

0.654

0.650

4.3 The Balanced Rectangular Beam
The balanced strain condition is defined as that at which the compression strain
in concrete = 0.003 and that in the tension steel &y = f, /Eg, Figure (4.2). From

the similar strain triangles, ¢y :

¢, 0003

_ (4.2)
d 0.003+fy,/Eg
Substitute the value of Es=200000 MPa:
Ch = 600 x d 4.3)
600+ f
The depth of the stress blocks ay:
B 6008,
a, = f, xC, = 600+ fy (4-4)
0.003 ap <Cp )
R - PN
A A i 0.5a
i Nc = 0.85fc bc
v i ,’II Ninb =Asjy =ppbdfy
y ® fy/ Es T g
— b ——»

(@) (b) (©

Figure (4.2) Rectangular beam in a balanced strain condition, (a) strain
distribution, (b) actual stress distribution, (c) equivalent stresses and
resultants

Using the second equation of equilibriumX Fx =0, when there is no external
horizontal force, N¢, = Nyp

0.85f..f,c,b=A,.f, (4.5)



substituting A, = p,b.d in the above equation, where py, is the balanced
reinforcement ratio, equation (4.5) becomes:

. 600d
0.85f 4. 2099 b ,pd.f 4.6
«Prg00+ g0 R (4.6)
£ 600
~ 08543 4.7
P ﬂl fy 600 + fy ( )

The resultant of the compression stresses N, is located at the center of the stress
block, at a distance (ap/2 ) from the compression face, the lever arm z (distance
between N¢, and Ny, ) equal to:

z,=0d—ap/2 (4.8)
If the depth of the beam is constant (tension face parallel to the compression

face) N¢p, and Ny, are parallel, equal, and opposite and creating a couple My,
(internal resisting moment or nominal flexural strength):

Mnb = Nep X Zp = Nip x 2 (4.9)
If f.=20MPa and f, =276 MPa, the following values of the variables in Egs.
(4.3) to (4.9) can be obtained:

cp =20 . 4-0685d
600 -+ 276
ap = 3, Gy =0.85x 0.685d = 0.582d
=085 ¢ 900 _gg5.0g520 000 35
f, 600+ f, 276 600+ 276

z,=0d—-2ap/2=d-0.582d/2=0.709d

Np = 0.85f..ab =0.85x 20x 0.582d.b = 9.9b.d
N = pp b.d. fy =0.0359(b.d)276 = 9.9b.d

Mpp = Nep % Zp = Ny x 2 =9.90.d(0.709d) = 7.02b.d 2

For other shapes like T, L, I, double reinforced beams, and other special shapes,
the same procedure can be followed to calculate the nominal balanced flexural
strength by assuming that the compression stress is constant across the depth and
equal to 0.85f." whatever the shape of the compression zone.

4.4 Modes of Failure according to ACI Code

The ACI Code considers the structural reinforced concrete member reach its
nominal flexural strength when the compression strain attains a value of 0.003.



The strain (&) in the first layer of tension steel (adjacent to the tension face) can
be found from the strain triangles, Figure (4.4). When (&) < 0.002, the cross-
section is in the compression controlled zone (¢=0.65), and the failure is sudden
without visual warnings like large deflection and cracks. When (€) > 0.005, the
cross-section is in the tension controlled zone (¢=0.90), and failure is preceded
by large deflection and cracks. When the strain (0.002 < ¢ < 0.005) the cross-
section is in the transition zone and the strength reduction factor ¢ equal to:

¢ =0.65+ (&t —0.002)250/3 tied members (4.10a)
¢ =0.75+ (& —0.002)50 spiral members (4.10b)
£:=0.003 &:=0.003 &:=0.003

e

P

&<0.002 0.005> &:>0.002 &>0.005

Compression Transition Tension

Figure (4.3) Modes of Failure according to ACI Code
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Figure (4.4) Variation of ¢ with the strain e



4.5 Maximum Reinforcement Ratio

The balanced beam fails by yielding of the tension steel (e = ¢, =f,/E;) and
crushing of concrete (e; = €, = 0.003), this failure is not preceded by visual
warning like large deflection and wide cracks, while tension failure is preceded
by visual warning, like large deflection and wide cracks or ductile failure.
Ductility means, maintenance of strength while sizable deformation occurs. To
ensure that this failure will occur, the ACI Code limits (e < 0.004) in beams and
columns subjected to small axial load (< 0.1f; Ay). the following example shows
the method of calculation:

If f.=20MPa and f, =276MPa, the neutral axis depth (Cmax.) equal to:

0.003 . 3
max = 0.007 7 ( )
amax :g pyd = (3/7)0.85d = 0.364d (4.11b)

The subscript (max.) is used to refer to the maximum conditions.
N¢max = 0.85 feamax.b =0.85f, (g p1.d)b=6.193b.d

'3
Ntmax. = Pmax. fyb.d =0.85f¢ (;ﬂl-d)b

3 085f,

pmax‘:7ﬁl( f

y

) =0.0224 (4.12)

max

z,. =d-a_ /2=d —gﬂld/2:0.8l8d

The nominal maximum flexural strength, (Max. M,) equal to:
Where k, = 5.06 MPa

The design maximum flexural strength equal to:
¢=0.65+ (¢, —0.002)250/3=0.65+ (0.004 — 0.002)250/3=0.817

M =0.817(5.06)bd? = 4.14bd* =k bd?

Where k, =4.14MPa. Table (4.2) shows the variables, kq, Kn, @max,, and pmax. for
different values of concrete and steel strengths when €;= 0.004 which is the
maximum strain recommended by the ACI Code. Table (4.3) shows the
variables, Kn, Km, amax.,, and pmax. for different values of concrete and steel

strengths when €;= 0.005 which is the minimum strain recommended by the ACI
Code for the tension controlled zone.



Table (4.2) Maximum constants for €; = 0.004 (¢=0.817)

f, (MPa) 276 345 400 520

fe Kn Km a/ld 100p 100p 100p 100p

20 5.06 4.14 0.36 2.24 1.80 1.55 1.19

25 6.33 5.17 0.36 2.80 2.24 1.94 1.49

30 7.50 6.12 0.36 3.31 2.65 2.28 1.76

35 8.45 6.90 0.34 3.70 2.95 2.55 1.96

40 9.30 7.60 0.33 4.03 3.22 2.78 2.14

Table (4.3) Maximum constants for €; = 0.005 (¢=0.9)

f, (MPa) 276 345 400 520

f, Ky K ald | 100p | 1000 | 100p | 100p

20 4.56 4.10 0.32 1.96 1.57 1.35 1.04

25 5.69 5.12 0.32 2.45 1.96 1.69 1.30

30 6.74 6.06 0.31 2.89 2.32 2.00 1.54

35 7.58 6.82 0.30 3.23 2.58 2.23 1.71

40 8.34 7.50 0.29 3.52 2.82 2.43 1.87

4.6. Minimum Reinforcement Ratio according to the ACI Code

When the area of steel is small due to small value of the external bending
moment or the cross-section is larger than necessary, it is possible that the
concrete resistance to the tensile stresses is more than that of the tension steel. In
other words, the cracking moment M, > M,. This mean that the structural
member will lose its strength once cracking occurs. To prevent such failure, the
ACI Code put a minimum limit of the reinforcement ratio unless the provided
reinforcement area exceeds the required by 33%. The minimum reinforcement
ratio is derived by assuming that the resultant of the tensile stresses at the
cracking stage is carried out by the tension steel (pminb.d ):

Vi 14
=N e s 4.13a
pmln. 4fy fy ( )

When the flange of a T beam under tension, the minimum reinforcement area
equal to whatever is greater from the equations below:

A, = ﬁ (20,)d > 2 (20,)d (4.13b)
A, = ﬁ OUEEION (4.130)

y y




For slabs and foundation of constant thickness, the minimum reinforcement area
Is that of shrinkage and temperature, according to ACI (24.4.3.2):

(@) When f, < 400 MPa and for deformed bars Pg,min. =0.002

(b) When When f, > 400 MPa deformed bars and welded wire fabrics
(smooth or deformed) pg.min. = 0.0018(400/fy) > 0.0014

The minimum reinforcement area is calculated with respect to the gross area:

As,min =pg,min.b'h (414)

The maximum spacing for shrinkage and temperature reinforcement should not
exceed 5 times the slab thickness or 450 mm.

4.7 Flexural Analysis of Reinforced Concrete Sections
When analyzing any reinforced section subjected to bending moment, the
following steps must be followed:

I. Compare pactual With pmin., if Pacwal = Pmin, Proceed to the next step, if
Pactual < Pmin , Multiply the provided As by (3/4) and proceed to the next
step, (in slabs, the provided area of steel should not be less that required
for temperature and shrinkage).

1. Compare pactal With pmax., if pacual < Pmax, Proceed to the next step, if not
(Pactual > Pmax) assume A = pmax(b.d) and proceed to the next steps.

4.8 Analysis of Single Reinforced Rectangular Sections

When any reinforced concrete section reach its flexural strength, the strain and
stress distribution are as shown in Figure (4.5), the stress resultant in tension
equal to:

T=A.f, (4.15)
The stress resultant in compression equal to:
C=0.85f.ab (4.16)

By equating the tensile and compressive forces (C and T, 0.85 fC'a.b = As fy),
the value of (a) can be found:

a=Agfy /(0.85fch) (4.17)
the lever arm (between C and T) z equal to:
z=d-al2 (4.18)

The internal moment (nominal flexural strength) M, of the section equal to:
M, =Cz=Tz (4.19)



4.8.1 Under- Reinforced Beams (Tension Failure)

When pact. < pp OF  pmax. the tension steel will reach yielding (fs > £, ) before
crushing of concrete. The stress resultant in tension (T=Asxfy). Increase in the
external loads will result in extension and elongation of the tension steel and
increase in deflection and cracks width, decrease in the depth of the compression
area, increase in the compression strain. The strength of the crosss-section is
attained when the compression strain reaches a value of 0.003. At this stage, the
the compression force equal to (C=0.85f; axb).

Using the equation of equilibrium in the horizontal direction (3> Fx =0):

C=T
a=Asfy /(0.85fch)
z=d-a/2
My, = Ag.fy(d —a/2)=0.85f.ab(d —a/2)
By substituting, a = As fy /(0.85 f(;b) andin the above equation, the A = phd
equation becomes:

M, = f hd’eol-0.590) (4.20)
Where o = pfy / f.

EXAMPLE (4.1)

A single reinforced concrete rectangular beam with b= 300 mm, h =450 mm,
d=390 mm, As = 4#20 = 1256 mm?. If f ; = 20 MPa and f, = 276 MPa. Find the
design flexural strength @M.

SOLUTION
The acttfsl remfg;cge(sment ratio pact, equal to b = 300 mm
Pact =—> = =0.0107
bd 300x390
The minimum reinforcement ratio pmin. equal to: E
S
14 14 &
in =—=——=0.005 I
Pmin fy 276 =
o \/?(; B \/2—0 B 0 004 e o (] o [ J
pmin =4t, T ax216

Therefore pmin =0.005 < paet. (0.K)).
From Tables (4.2) pmax =0.0224 ( €,=0.004) and from Table (4.3) pmax. =0.0196
(e:=0.005), therefore the beam is under reinforced and ¢, > 0.005.

h =450 mm



Jo ATy 1256x276
0.85f,b 0.85x 20 300

When calculating (a), use either m or mm so that the units are consistent,
g ATy 1256x107 x 276
0.85f,.b  0.85x20x0.30

z=d -a/2=390-68/2=356mm
Mp = As.fy.2=1256 x1070 x 276 x 0.356 = 0.1234MN.m =123.4kN.m

Since amax >a and p,.,. > p.. , therefore 0.005 < & (tension controlled) and

¢=0.9. The value of ¢ can be calculated from the strain triangles after finding

the value of c:

c=alp; =68/0.85=80mm
d ; € % 0.003= 390-80 0.003=0.011625>0.005, that is ¢ =0.9;

M =0.9%x123.4=111.1kN.m

The value of M|, can be calculated in another way, by finding @ = pof, / fC'

=0.068m = 68mm

& =

using equation (4.20):
= pfy | fe =0.0107x 276/20 = 0.148

M, =20 x 0.3(0.39)% x 0.148(1— 0.59 x 0.148) = 0.1233MN.m

4.8.2 Analysis of Over- Reinforced Beams (Compression Failure)

When the area of tension steel is relatively large, the concrete in compression
may reach its strength before yielding of steel. In such case the depth of the
neutral axis is relatively large resulting in large compression force (C) to
equalize the large tension force (T). The section will fail when the strain in
compression reaches a value of 0.003, failure in such cases is brittle without
visual warnings such as large deflection and wide cracks since f, < f,.

The stress in the tension steel can be found in terms of the neutral axis depth,
from similar strain triangles:

& 0003 _d-Chn03
d-c C C
From the equilibrium equation (C=T):
0.85f, AL.ch = Eqeq A = 200000x0.0030 € A —6009 =€ A,
C C
By substituting A, = pbd and c=k,.d, the above equation becomes:
ku2 +m.pk, —m.p=0 (4.21)

where m equal to:
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600
m=————
0.85f..41
Solving equation (4.21) for ky:
ky =M+ (Mp/2)% —mpl2 (4.22)
After that find the value of ¢ = k,.d, a = B1xc, and fs as follow
(d-c)

fg =600~
> C

The nominal flexural strength equal to:
M, =0.85f,.ab(d —a/2) = A,.fs(d —a/2)
It is not possible to use the equation My =Ag.f,(d —a/2) to calculate My,

since fs< fy.

EXAMPLE 4.2

Recalculate the design flexural strength of the beam of example (4.1) if As =
5000 mm?.

SOLUTION
The reinforcement ratio pequal to
5000
= =0.0427 > p,,,, =0.005 O.K.
p 300)(390 >10m|n. ( )

Refer to Table (4.2) , this means that the p, =0.0359and >p > p__ =0.0224
section is over reinforced and failure will be in compression.

m= 600 =41.5225
0.85x20x0.85

m.p=41.225%x0.0427=1.773

ky =173+ (L.773/2)2 —1.773/2=0.713

€c=0.713%*390=278mm
a=0.85x278=236mm > a, =227mm

e _ 30218654 2aoMpa < fy =276MPa
278
£ = %782780.003 =0.001209 < 0.002

The section is in the compression controlled zone and ¢=0.65

M, =0.85x20x0.236x0.3(0.39 — 0.236/ 2) = 0.3274MN.m = 327.4kN.m
MM, =0.65x327.4=212.8kN.m

The following table can be used to find the value of k, and fs against the value of
m.p

11



Table (4.4) Values of k,and fs; against m.p

1.0 1.25 1.5 2.0 2.5 3.0 3.5 4.0

Ky 0.618 | 0.686 | 0.686 | 0.732 | 0.766 | 0.791 | 0.812 | 0.828

fq 371 315 274 220 184 158 139 124

The above steps give exact values for the neutral axis depth and the design
flexural strength. The ACI Code recommends that p=p, . =0.0224t0 ensure

ductile failure. The solution of Example (4.2) is as follow:
p=p.and a=a__ =0.36d =0.36 x 390 =140mm

M =0.85fc.amax b(d —amax./2) = As. fs(d —amax./2)
=0.85%x20x%0.140x0.3(0.39—-0.14/2) =0.2285MN.m = 228.5kN.m

Or the value of max .k, =5.06MPa to calculate M,

EXAMPLE 4.3

Recalculate the design flexural strength of the beam of example (4.2) according
to the ACI recommendation.

SOLUTION

The maximum area of steel that can be used in this case so that (fs=f,) according
to the ACI recommendation Max.A, = p,...bd =390 x 300 x 0.0224 = 2621mm*

The maximum design flexural strength equal to:
M =k b.d? =4.14x0.3x 0.39° =188.9kN.m

4.8.3 Analysis of One- Way Slabs

The one way slab is a slab supported on two opposite sides or a slab with length
to width ratio > 2.0. The load in such cases is transferred in the span direction or
the short direction in case the slab is supported on four sides. The behavior of
the slab is such case is similar to that of beams. For the sake of analysis a strip
of 1.0 m wide is considered as a beam and the equivalent reinforcement in this
strip is calculated.

EXAMPLE 4.4

A one way simply supported reinforced concrete slab has overall thickness of
150 mm, c/c span = 3.5 m, and reinforced in tension with 12 mm bars on 150
mm c/c. the slab is subjected to a finishing dead load of 2 kPa (in addition to its
self-weight) and a live load of 3.5 kPa. Show whether the slab can resist the
ultimate load. f;=20 MPa and f,=276 MPa.

12



150 mm

SOLUTION

I. Required strength = External ultimate bending moment
Calculate the weight of 1.0 m? of the slab as a dead load:
1x1x0.15x 24 =3.6kPa
Ultimate Loads or Factored Loads
w, =1.2DL +1.6LL =1.2(3.6 + 2) +1.6(3.5) =12.32kPa

|20Pmm 3.3m

\ 4

A

|‘ o 7

@) (b)

Figure (4.5) Example (4.4) (a) cross-section of the slab, (b) one
meter strip

Maximum external bending moment M,

M, =12.32(3.5)%2 /8 =18.87kN.m/m

ii. Design flexural strength ¢Mp:
Area of one bar with diameter of 12 mm = 113 mm? with a spacing of 150 mm,

Area of reinforcement (A) in a strip 1.0 m width = (1000/150)x113= 753
mm2/m:;
Aq 753

9 =~ 1000x 150
p, is calculated on the basis of the gross-section (b.h)

=0.005> Min.py =0.002 (O.K.)
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d =h—(clearcover) —d,/2=150-20-12/2 =124mm
753

=—— =0.006< =0.0196 (therefore the section is under
P = 1000x124 Amax. (

reinforced)

L __ 753x276
0.85x 201000
My =0.9A5.F,.2=0.9x753x10™® x 276 x 0.118 = 0.0221MN.m

=22.1kN.m >18.87kN.m
Therefore the slab can resist the ultimate load.

=12mm¢ z=124-12/2=118mm

4.9 Analysis of Doubly Reinforced Rectangular Beams

In some cases, the size of the beam is limited due to its position in a specific
place or due to aesthetic requirements. If the required flexural strength is more
than the maximum flexural strength, an increase in the flexural strength in this
case is necessary. This can be accomplished by using extra steel in tension and
in compression. The steel in the compression zone is used for three purpose:
I. Increase in the flexural strength together with additional tension steel,
Ii. Decrease of the long term deflection due to creep and shrinkage of
concrete,
ii. Stirrups hanger, and
iv. In beams subjected to moment reversal.
The method of analysis is similar to that of single reinforced sections, with
the compression force divided into two parts, the first one is that of the
concrete of area (axb) and the second in the compression steel. The stress in
the compression steel may or may not reach yielding when the section attains
its strength depending the neutral axis depth and the area of the tension and
compression steel. The stress in the compression steel is calculated from the
strain triangles at failure.

The flexural strength M, assumed to be composed of two parts, Mpand My,
Figure (4.6). The forces creating M 1 are that in the tension steel (T1-As %xfy) and

that in the concrete in compression (C;=0.85f. axb). The forces creating M, are

that in the tension steel (T,=As;%f,) and that in the compression steel [C,=As’
(fs - 0.85f)].
The ACI Code limits p, = A, /(bxd) < p,. for double reinforced sections as that

for single reinforced section. The area As, that equalize or neutralize A; is not
controlled by this limitation.
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To check whether the compression steel reaches yielding or not, refer to Figure
(4.7) and from the similar strain triangles compute the value of c:

d
l_ b 0.85 f¢
) N A A
® “@—+5Co= A f; . lar2
As As +Ci=T
A 4
_ . d
— d-d + d-a/2
As As2 Ast
® @ T.=Axf, @ i
T]_ = As]_ fy
Mn = Mnl + Mn2 As2 = As' Asl = AS 'ASZ
Design Moment Moo = Ac f. (d-d* a to make Ne1 =Nu
oM, = Aty (0-d) i.e., a=Ax T, / (.85 5 b)

Mnlz Asl fy (d'aIZ)

Figure (4.6) Analysis of Double Reinforced Sections

0.003 ¢(g,) Solving forc:
c c-d

. 0.003
0.003- &, (4.23)

Using the equilibrium equation N¢; = N to derive the least tension
reinforcement ( O)im.) ratio that ensure yielding of the compression steel when
the section attains its strength.
0.85fc Al.ch = (Ag — Ag) fy (4.24)
Substituting A, = p,, bd, A, =p bd, and C from equation (4.23) and
¢, = f,/E,in the above equation, the value of P[jm become:

. fod 600 .

- =0.8501-—*-— +
Pim. p f, 4 600-1, p (4.25)

If pin, <p,the compression steel will reach yielding. Table (4.5) shows the
depth that ensure yielding of the compression steel
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C=(0.003 /0.003-&,) d"

A\ 4

0.003

Figure (4.7) Strain distribution in the compression
zone when the compression steel yield

v

0.003

&s

A

A 4

Figure (4.8) Stain distribution in a balanced
double reinforced concrete section

Table (4.5) Minimum depth of beams to ensure yielding of compression steel

f, ¢ =0.004 € =0.005
Min. d Min. d
Max. d’/d d =63 mm Max. d'/d d =63 mm
276 0.231 275 0.203 310
345 0.182 345 0.159 395
400 0.143 440 0.125 505
520 0.057 1105 0.050 1260

The maximum reinforcement ratio to ensure tension failure equal to:

Pmax. = Pmax. T P
In some cases, the compression steel may not reach yielding when the section
attains its strength, like beams with shallow depth or when p, < Pin , the stress

16
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in the compression steel can be calculated from the strain triangles , Figure (4.8)
above, if the section is in a balanced strain condition:

d  d-d
0.003+ey g +g,

Or

£g = 0.003%(0.003+gy)

The balanced reinforcement ratio pg equal to:
fs

fy
Where f; equal to:

Pb=Pp+p

fg = Es{o.oos—%(o.oom gy)}

The maximum reinforcement ratio equal to:

pmax :pmax. +plfsll fy (427)

The value of fs can be calculated also from the strain tringles in the compression

Zone:

c—d c—d

=600
C C

From the equilibrium equation T= C;+C;

fo =0.003Eq

0.85f;.fr.ch+ Ag(fs —0.85f) = Aq.fy (4.28)

Substituting fs " in the above equation becomes a second degree equation in terms
of c. after calculating the value of c, the values of a and f; can be calculated as
follow:

M, =0.85f..ab(d—a/2)+A.fs(d—d) (4.29)
The ACI Code recommends that transverse steel should be provided (stirrups or

equivalent welded wire fabric) in places where there is a compression steel to
avoid bucking of the compression steel.

EXAMPLE (4.5)

A rectangular section with b =350 mm, d =680 mm, reinforced in tension with 6
bars #28(As =3696 mm?), two bars # 25 in compression (As=982 mm?), d'=63
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mm from the compression face. fC' =20MPa and f, =400MPa . Calculate the

nominal and design flexural strength for the section with and without
compression steel.

SOLUTION

Calculate pjjm . from Equation (4.25), to check whether the compression steel
will reach yielding or not:

350 % 680
p =2 500413
350 x 680

20 63 600
400 680 600-400
Therefore the compression steel will reach yielding. Compare p withp,_ to

check whether it is under (T.F.) or over reinforced (C.F.):

Prax. = Prax. + p =0.0135 +0.00413 = 0.01763 > p = 0.0155

therefore the beam is under reinforced, p,,, =0.0135 is taken from Table (4.3) for
g, >0.005and ¢=0.9

T = A.fy =3696x107° x 400 = 1.478MN
C, =0.85x20xax0.35="5.95a
C, =982x107%(400-0.85x 20) = 0.376MN

P =0.85x0.85x

+0.00413=0.0142 < p =0.0155

a= 1'4785_92'376 =0.185m =185Mm < a3 = 0.32x 680 =218mm
¢ =185/0.85=218mm
& = M(0.003) =0.0064>0.005 , #=09

218

Mp1 =0.85%x20x0.185x0.35(0.68 — 0.185/2) = 0.6467MN.m

M5 =982 x107° (400 — 0.85 x 20)(0.68 — 0.063) = 0.226MN.m

M, =646.7 + 226 =872.7kN.m

MM =0.9%x872.7=785.4kN.m

If the compression steel is omitted p=0.0155> p,. =0.0135for (&, =0.005), but
for ¢, =0.004 , p,,, =0.0155, the nominal and design flexural strength equal to:
M, =K ;0.0 =5.06 x 0.35 x 0.68% =818.9kN.m

MM =K, naD.d? =4.14x0.35x 0.68% = 670kN.m
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The values of kn, max and km max are taken from Table (4.2) for (&; =0.004) and

¢=0.817.
The increase in the nominal flexural strength with the compression steel equal
to:
872.7-818.9
818.9
While the total area of steel (tension and compression) is increased by 26.6%,
this shows that providing compression steel only will not increase the design
flexural strength in the same proportion, but additional tension steel must be
provided also.

=6.6%

EXAMPLE (4.6)

Resolve Example (4.5) if f, =30MPa .
SOLUTION

Calculate pjjm . from Equation (4.25) to check whether the compression steel

will reach yielding or not:

b —0.85x0.836x -0 , 03 600
400 680 600- 400

Therefore the compression steel will not reach yielding when the section attains

its strength, Equation (4.28) to find the value of c:

+0.00413=0.0189 > p=0.0155

c—0.063

0.85%30x0.836(c)0.35+982x10° [600
c

—0.85x 30} =3696x107° x 400

c? —0.1225¢ —0.00498 = 0
¢ =155mm,a =0.836x155=130mm < a,,, =0.31x680 =211mm
This means that the section is under reinforced and &, >0.005and ¢=0.9. The

value of a is less than that of the example (4.5) because of the increase in f_.
155-63

f, =600 =356.1MPa < f, = 400MPa

P, = 0.02+ 0.00413°25:1 _ 0 0037 > o
' 400

Which mean that the section is under reinforced as mentioned previously.
M, =0.85x30x0.130x0.35(0.68 —0.130/2) = 0.7136MN.m

M, =982 x107°(356.1—0.85 x 20)(0.68 — 0.063) = 0.2003 MN.m

M =713.6+200.3 = 913.9kN.m

MM, =0.9x913.9 = 822.5kN.m

If the compression steel is removed, M, =882.9kN.m . The increase in the
nominal flexural strength in the presence of compression steel equal to:
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913.9-882.9
882.9
This mean, that adding compression steel only will not increase the flexural
strength significantly, but additional tension and compression steel must be
provided.
Comparing the results of this example with the previous one, shows that
increasing f. by 50% from (20 to 30 MPa), increased the nominal flexural
strength by 4.7% and 7.8 % for the double and single reinforced sections
respectively. The compression strength of concrete doesn't have great influence
on the flexural strength of beams like slabs and beams, but in columns it have a
great influence especially those failing in compression.

=3.5%

4.10 Analysis of T-Beams

In constructing slabs and roofs, the beams and slabs are cast together, and if it is
cast separately (as in bridges) they are bonded together (by shear connectors).
The stirrups and top bars of the beams are extended to the slabs, and the slabs
top and bottom reinforcement are extended to the beam and therefore both
become one unit as a T-shape, Figure (4.9). The slab part is called flange and the
lower part called web or (stem). When the beam is subjected to positive bending
moment (compression at the top and tension at the bottom) part of the slab
adjacent to the beam will be subjected to compression stresses to balance the
tensile force in the web. These compression stresses will decrease with the
distance from the web, Figure (4.9). At the ultimate stage, the distribution of the
longitudinal compression stresses becomes more uniform.

For beams with slabs on both sides, the ACI code recommends that the width of
the beam flange is the smaller of the following:
I. Span/4,
ii. 16hs + by, and
Iii. Web width + the clear distance to the next beam (Center to center of the
beams).

For beams with slab on one side (edge beams), the width of effective slab that is
part of the beam, is the smaller of the following:

1. Six times the slab thickness (6hy),

ii. Span/12, and

iii. Half the clear distance to the next beam.

If the beam is subjected to negative bending moment (tension at the top and

compression at the bottom) the beam is designed as a rectangular beam with
dimensions (bw.d).
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Depending on the beam and slab dimensions, tension steel area, and the
compression strength of concrete, there are three possible locations of the depth
of the stress block (a):

| |
? Flange 71h¢ flange A‘
d
h web
, és 7|4 és Web
* by #

Figure (4.9) Distribution of the compression stresses on the flange

I. In the flange (a < hs), and the beam is considered as a rectangular beam
with dimensions (bxd),

Ii. Equal to the flange thickness (a = hf) and the beam is considered as a
rectangular beam with dimensions (bxd) or,

iii. Below the bottom of the flange (a > hy) and the beam is considered asa T
beam.

In the third case, the tension steel is divided into two parts, one equalizing the
compression force in the two wings of the flange (As), and the other equalizing
the compression force in the web (Asy), Figure (4.10) and computed as follow:

A .fy =0.85fch¢ (b-by) (4.30a)
Mn1 = Ast-fy(d —hs /2) (4.30b)
Asw = A — st (4.31a)
Agw-fy =0.85fc.aby, (4.31b)
Mp2 = Agy- fy(d —a/2) (4.31¢)

the total nominal flexural strength equal to:

M, =M_ +M, (4.32)
To ensure a tension failure, the reinforcement ratio should be limited as for
rectangular beam:
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h¢

=—X
Pw by, d Pw, max.

pw,max =lomax. +pf (433)
Ay
= 4.34
P b, d ( )
Deft
A - - LI A
v | | a
1 | P——
1 1 \ 4
| |
— : ASf : + ASW
| |
® | ® o
b I‘—'bw |
(A - A, . _085T¢(b—by)hy
" 085f.b, sf fy

Mni=Asf (d—hf /2) M ,=(A -A,)f (d-a/2)

Figure (4.10) Calculation of the flexural strength of a T section

Pmax. 1S calculated as for single reinforced rectangular beam. The reinforcement
ratio (o, ) should be compared also with the minimum reinforcement ratio

(pmin.)'

EXAMPLE (4.7)

A reinforced concrete floor composed of continuous slab supported on parallel
beams spaced 3.0 m on centers and 6.0m span. f  =20MpPa and f, =400MPa.

The beams are reinforced in tension with six bars 35 mm diameter (5772 mm?2).
Calculate the design flexural strength of an intermediate beam.

h=150 mm

-

600 mm

300mm

A

2.7m %‘l 2.7m

300mm

Figure (4.11) Beam slab system of Example (4.7)
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SOLUTION
The effective width of the flange equal to:

b <span/4=6000/4=1500mm
b<b,, +16hs =300+ 16 x150=2700mm

b <c/cdistance between beams=3000mm
therefore, b =1500 mm

p, _0B5x20x015(L5-03) oo 162 seco 2
200
b= St _ 7650 008
by.d 300600
_ST72_ 5112 oo

W= 4 300x600
Pumax. = Pmax. + P =0.0135 +0.0425 = 0.056 > p,, =0.032

The value of ppax IS taken from Table (4.3),¢, =0.005and ¢=09. If
Pu > Puma. the value of pmax can be taken from Table (4.2) and substituted in
the above equation. If p,still > p, ... the section is either in the transition or the

compression controlled zone.
Therefore the section is under reinforced. To check the value of (a), calculate T
and Cs :

N = Ag.fy =5772x107° x 400 = 2.309MN

Ngf =0.85f.b.hs =0.85x20x1.5x0.15=3.825MN > N;

Therefore a < hy, the section is considered as a rectangular section with
dimensions (b.d = 1500600 mm):

a= 2.309 =0.09m =90mm
0.85x20x1.5

My =N;(d —a/2)=2.309(0.6 - 0.09/2) =1.281IMN.m
MM =0.9%x1281=1153kN.m

EXAMPLE (4.8)

Calculate the design flexural strength for the edge beam of Example (4.7).

SOLUTION

Calculate the value of the effective flange width b:
b <b,, + span/12 =300 + 6000/12 =800mm
b <by +6hs =300+ 6x150=1200mm
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clear distance between beams = 300 +2700/2 =1650mmb <b,, +%

therefore b = 800 mm

p = 285x20x0.1508-0.3) 4 158, 10-612 _3188mm?

400

= Ast _ 3188 _ 4177
by-d  300x 600

_5772_ 5772 _ a0

W= d 300x600
Pumax. = Pmax. + 01 =0.0135 +0.0177 =0.0312 < p,, = 0.032

From Table (4.3) for ¢, =0.005, p,. =0.0155

Pw,max. = Pmax. +£f =0.0155+0.0177=0.0332> p,, =0.32
That is 0.005> & >0.004,

Check the location of the depth of the stress block (a);

T =A,.f, =5772 x10™° x 400 = 2.309 MN

C¢ =0.85f.bhs =0.85x 20x0.8x0.15 = 2.045MN < Ty

Therefor a > hy, and the beam is considered as a T beam and divided into two
sections:

Mps = At fy(d—h¢ /2) = 3.188x107° % 400(0.6 — 0.15/2) = 0.6695MN.m
Agy = As — Ay =5772 — 3188 = 2584mm?

Asw-fy _ 2584x400
0.85f..b, 0-85x20x300
c=203/0.85 = 239mm
~ 600239

239
& —0.002
3

203mm

a=

& (0.003) = 0.00453

$=0.65+ (250) = 0.861

M, = 2584x107%(0.6 —0.203/2) = 0.5152MN .m
MM, =0.861(669.5 + 515.2) =1020kN.m

4.11 Analysis of Special Beam Shapes

Special shapes mean shapes other than rectangular or T shapes. The method of
analyzing these sections is the same as that for T shapes, and can be summarized
as follow:
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i. Calculate the tensile force T = Ag.f, , which should be equalized by a

compression force C,

1. The compression force C = 0.85 fC'(AC = area under compression) which

Is not rectangular, from this area the value of (a) can be found,

1ii. Calculate the centroid of this area (y.) by taking the moment of areas
about the compression face,

iv. The leverarm z = d -y,

V. The nominal flexural strength M, =T.z=C.z

vi. Check the values of ¢, &, and ¢.

150 150
EXAMPLE 4.9 s
100
Calculate the design flexural strength for the 7‘L L 51
section in Figure (4.12). Aq = 4#25 =1964mm? £
f. =30MPa and f, =400MPa. E
J( .

SOLUTION Figure (4.12) Example (4.9)

Pmin. =1.4/400 = 0.0035

Pmin. = ~/30 /(4 x 400) = 0.00342

Therefore ppmi, =0.0035

Pw =1964/(400x 540) = 0.0091 > pmin. (0.K.)

T =0.001964x 400 = 0.7856MN
A =0.7856/(0.85x 30) = 0.0308078m? = 30808mm?

Area of the two parts in the compression zone = 2x150x100= 30000mm?< A,

Therefore a > 100

30808 = 30000 + 400 (a-100)
a=102 mm

P =0.85-0.00725(30 — 28) = 0.836
¢ =102/0.836 =122mm

& = 4=C6 003 = %0.003 =0.01027 > 0.005

C
Therefore ¢ =0.9

_ 400x102x51-100x100%50
Ye = 30808 N
z=d -y, =540-51=489mm
M, = 0.7856x 0.489 = 0.3816MN.m = 381.6kN.m
MM , = 0.9x381.6 = 345.7kN.m

51mm
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Chapter Five

Strength Design for Flexure
5.1 Introduction

In chapter four, analysis of various reinforced concrete sections were discussed
using the strength design method. In all cases, the dimensions of the cross-
section, area of steel, and materials strength f; and f, are given or known and the
design flexural strength (¢M,) is required.

In this chapter, the strength design for flexure will be discussed. The loads
(Ultimate loads), required moments (Ultimate moments), and materials strength
are given or known and the required information are part or all of the cross-
section dimensions and the area of steel.

5.2 Design of Single Reinforced Rectangular Sections

The design of rectangular sections may include determining the dimensions b or
d or both of them and the area of steel. The dimensions and area of steel
determine the mode of failure. Compression failure may be dangerous because it
is brittle and occur suddenly without visual warnings. While tension failure,
gives visual warnings like large deflection and wide cracks. To ensure such
failure, the reinforcement ratio should not exceed ppax Which is less than the

balanced reinforcement ratio pp. The reinforcement ratio also, should be more
than the minimum reinforcement ratio pmin. , SO that the section will not lose its
strength at cracking unless the area of steel provided is (4/3) of that required.

There are many sections that satisfy this requirement (pmin. < p < pmax) . If it is
required to use small concrete section it means that p = pmax but such sections

are not economical because of the relatively large area of steel and the
probability of large deflection. It is possible to use Table (5.1) to find the
minimum depth for beams and one-way slabs:

Table (5.1) Minimum Depth of non-Prestressed beams and one-way slabs unless
deflection is computed

Minimum thickness h
Simply One end Both ends Cantilever
supported continuous continuous
Member Members not supporting or attached to partitions or other
construction likely to be effected by large deflection
Solid one-way slabs L/20 L/24 L/28 L/10
Beams or ribbed one- L/16 L/18.5 L/21 L/8
way slabs

Notes :
The values in the above table are for cast in place normal concrete and fy = 400 MPa. For
other cases, the values should be multiplied by the following factors:
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a- For lightweight concrete with density between (1440 to 1920 kg/m®) multiply by
(1.65-0.0003w¢) > 1.09
b- For fy # 400 MPa, multiply by (0.42 + f /689) .

At the beginning calculate the required M, > M, / ¢, M, required external
flexural strength, and ¢ = strength reduction factor = 0.65 — 0.9, depending on
the value €. If:

Max.M, = max. knbd? > required M,

(the beam is single under reinforced, and p < pmax), and if:

Max.M, = max. knbd? < required M,
The beam is double reinforced.

5.2.1Determination of the Tension Reinforcement

If the dimensions of the cross-section are given or known, the following
procedure is followed to find the necessary reinforcement area:
I. From the equilibrium equation

C=085fab=T = pbhd.f, 51

a=pd(f,/0.85f)=pdm (5.2)
Where m=f, /(0.85f,)

Using the moment equation:

M, =T.z=pbd.f,(d-a/2)

Substituting (a) from Equation (5.2), the equation becomes:

p-f,d

M. = phd.f,(d - 22—
e MY 13

) (5.3)

Substituting (m = f, /0.85f;) and dividing both sides of equation (5.3) by (bd?),
Equation (5.3) becomes:

M, /(bd2) =k, = p.f,(L— pm/2) (5.4)

Solving Equation (5.4) for the reinforcement ratio p:

55
p:£|:l /1_ 2kn.m} (5.5)
m f,

It is possible to use Equation (4.20) in chapter four in the following form to

calculate the reinforcement ratio

M, /(f.bd?) = (- 0.59w) (5.6)
w=pf, | f;

The following Table is a solution of the above Equation.
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Table (5.2) Solution of Equation (5.6)

f
w:p—Yo.ooo 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009

.00
01
.02
.03
.04
.05
.06
.07
.08
.09
10
A1
12
13
14
15
.16
17
18
19
.20
21
22
23
24
.25
.26
27
.28
29
.30
31
32
33
34
.35
.36
37
.38
39

.40

fe

.0000
.0099
.0197
.0295
.0391
.0485
.0579
0671
0762
.0852
0941
1029
1115
.1200
1284
1367
1449
1529
.1609
.1687
1764
.1840
1914
.1988
.2060
2131
2201
2270
2337
2404
.2469
.2533
.2596
.2657
2718
2777
.2835
.2892
2948
.3003

.3056

.0010
.0109
.0207
.0304
.0400
.0495
.0588
.0680
0771
.0861
.0950
1037
1124
1209
1293
1375
1457
1537
1617
1695
772
1847
1922
1995
.2067
2138
.2208
2277
2344
2410
2475
.2539
.2602
.2664
2724
2783
2841
.2898
2954
.3008

.3061

M, /(f.bd?) = w(l-0.59)

.0020
.0119
0217
.0314
.0410
.0504
.0597
.0689
.0780
.0807
.0959
.1046
1133
1217
1301
1384
.1465
1545
1624
1703
1779
.1855
1929
.2002
2075
2145
2215
2284
2351
2417
.2482
.2546
.2608
.2670
2730
.2789
2847
.2904
2959
3013

.3067

.0030
.0129
.0226
.0324
.0419
.0513
.0607
.0699
.0789
.0879
.0967
.1055
1141
1226
1309
1392
1473
.1553
1632
1710
1787
.1862
1937
.2010
.2082
2152
2222
.2290
2357
2423
.2488
.2552
.2614
.2676
2736
2795
.2853
.2909
.2965
3019

3072

.0040
.0139
.0236
.0333
.0429
.0523
.0616
.0708
.0798
.0888
.0976
.1063
1149
1234
1318
.1400
1481
1561
1640
1718
1794
1870
1944
2017
.2089
.2159
2229
2297
.2364
.2430
.2495
.2558
2621
.2682
2742
.2801
.2858
2915
2970
.3024

3077

.0050
.0149
.0246
.0343
.0438
.0532
.0625
0717
.0807
.0897
.0985
1072
1158
1243
1326
.1408
.1489
.1569
.1648
1726
.1802
877
1951
2024
.2096
.2166
.2236
.2304
2371
2437
2501
.2565
.2627
.2688
2748
.2807
.2864
.2920
2975
.3029

.3082

.0060
.0159
.0256
.0352
.0448
.0541
.0634
.0726
.0816
.0906
.0994
1081
1166
1251
1334
1416
1497
577
.1656
1733
1810
.1885
1959
2031
.2103
2173
2243
2311
2377
2443
.2508
2571
.2633
.2694
2754
2812
.2870
.2926
2981
.3035

.3087

.0070
.0168
.0266
.0362
.0457
.0551
.0643
.0735
.0825
.0915
.1002
.1089
1175
1259
1342
1425
.1506
.1585
.1664
1741
1817
1892
.1966
.2039
2110
.2180
2249
2317
2384
.2450
2514
2577
.2639
.2700
2760
.2818
2875
2931
.2986
.3040

.3093

.0080
.0178
0275
.0372
.0466
.0560
.0653
0744
.0834
.0923
1011
.1098
1183
.1268
1351
1433
1514
.1593
1671
1749
1825
.1900
1973
.2046
2117
2187
.2256
2324
2391
.2456
.2520
.2583
.2645
.2706
2766
2824
.2881
2937
2992
.3045

.3098

.0090
.0188
.0285
.0381
.0476
.0569
.0662
.0753
.0843
.0932
.1020
.1106
1192
1276
1359
1441
1522
1601
1679
1756
1832
1907
1981
.2053
2124
2194
.2263
2331
2397
2463
2527
.2590
.2651
2712
2771
.2830
.2887
2943
2997
3051

.3103
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Example (5.1)
A reinforced concrete beam with b= 350 mm, and d = 540 mm is subjected to a
factored moment of 450 kN.m. If f, =25MPa and f, =276 MPa, calculate the

necessary area of steel.

Solution

To calculate the required nominal moment (M) the value of ¢ must be known

or assume a certain mode of failure subjected to a later check. Assume ¢ =0.9:
M, >450/0.9 =500kN.m

Referring to Table (4.3) to find the value of Maxk, =5.69MPa, the nominal
maximum moment equal to:

Max.M =5.69x 0.35x 0.542 =0.5807MN.m =580.7kN.m > M n=500 KN.m
Therefore the section is single under reinforced (p < p,., )

fy 276
085 fo - 0.85x25

m =12.99

M, 05
" bd? 035x0542
1 {1_\/1_2x12.99><4.9

K =4.9MPa < Maxk,, =5.69MPa

P=12.99 276

Using Table (5.1) to find @ and then p:

.M” 5= 05 5 =0.196
fobd® 25x0.35x0.54

f
@w=0.226= ﬂ , then pequal to p=0.226x25/276=0.0205:

1:C
The required area of steel equal to:

As =0.0205 x 350 x 540 = 3875mm?

To determine the number and diameter of bars, it is preferred to satisfy the
following provisions:
I. Arrange the bars symmetrical about the vertical axis,
1i. Use at least two bars, one in each corner,
iii. For beams with normal dimensions, use bars with diameter <35 mm
starting with the small sizes,
iv. Use no more than two diameters with one size difference to avoid
mistakes during construction, e.g., (22, 28), (16, 20) and not (22, 35) or
(12, 25),
v. Arrange the bars in layer wherever possible,
vi. Satisfy the provisions for bars spacing,

} =0.0205< p,, =0.0245
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vii. When using more than one layer of steel or more than one size of bars, put
the larger sizes next to the tension face, and
viii. In large beams and columns, sometimes it is necessary to put the bars in
bundles (two, three, or four) as shown below. These bundles should be
surrounded by stirrups or ties.

o o o0
o o0 o0 :0 L
Figure (5.1) arrangement of bars in bundles

Referring to Table (5.3) for bars sizes and diameter, there are many choices, but
it is preferable to start with small sizes because it is to transport, cut and shape it.
Try 8#25= 3928 mm? and put it into two layers as shown.

- 350mm
& .
= Figure (5.2) Arrangement of
3 bars for Example (5.1)
25#8
1 e o o
000 00

or it is possible to choose 4# 28 in the bottom layer = 2646 mm? and 4 # 22 =
1520 mm? in the layer above, the sum = 4166 mm?.

Table (5.3) Area of group of bars

Dia. Number of bars

Mm 1 2 3 4 5 6 7 8 9 10

10 79 158 237 316 395 474 553 632 711 790

12 113 226 339 452 565 678 791 904 | 1017 | 1130

16 201 402 603 804 | 1005 | 1206 | 1407 | 1608 | 1809 | 2010

19 284 568 852 | 1136 | 1420 | 1704 | 1988 | 2272 | 2556 | 2840

22 380 760 | 1140 | 1520 | 1900 | 2280 | 2660 | 3040 | 3420 | 3800

25 491 982 1473 | 1964 | 2455 | 2946 | 3437 | 3928 | 4419 | 4910

28 616 | 1232 | 1848 | 2464 | 3080 | 3696 | 4312 | 4928 | 5544 | 6160

32 804 | 1608 | 2412 | 3216 | 4020 | 4824 | 5628 | 6432 | 7236 | 8040

35 962 | 1924 | 2886 | 3848 | 4810 | 5772 | 6734 | 7696 | 8658 | 9620

Bars #44 and 57 mm are used in columns and rarely used in beams.

If the beam is not exposed to weather or in contact with soil, the reinforcement
requires 40 mm clear cover. This cover protects the reinforcement from rusting,
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fire, and integrates the bars with the other parts of the beam. The clear spacing
between bars must be checked and should be not less than the following:

25 mm,
Bar diameter, and
(4/3) maximum aggregate size.

Table (5.4) shows:

The minimum width for different bar sizes using #10 mm stirrups, when
using larger bar size the difference is added to the two sides,

Add the last figure in the last column for every additional bar,

If the diameters are different, the width is limited to the small bars and the
difference in the last column is added to the large bars, and

Iv.  Maximum coarse aggregate size should not exceed (3/4) clear spacing
between bars.
Table 20.6.1.3.1- Specified concrete cover for cast in-place nonprestressed
concrete members
Concrete exposure Member Reinforcement Specified cover
Cast against and All All 75
permanently in contact
with ground
Exposed to weather or in All No. 19 through No. 57 50
contact with ground No. 16 bar, W31 or 40
D31 wire, and smaller
Not exposed to weather or No. 45 and No. 57 40
in contact with ground Slabs, joists, and | No. 35 bar and smaller 20
walls
Beams, columns, | Primary reinforcement, 40
pedestals, and | stirrups, ties, spirals,
tension ties and hoops
Table (5.4) Minimum width for beams according to ACI
Dia. Number of bars in single layer For each
Mm 2 3 4 5 6 7 8 additional
bar
12 177 214 251 288 325 362 399 37
16 181 222 263 304 345 389 427 41
19 184 228 272 316 360 404 448 44
22 187 234 281 328 375 422 469 47
25 190 240 290 340 390 440 490 50
28 196 252 308 364 420 476 532 56
32 204 268 332 396 460 524 588 64
35 210 280 350 420 490 560 630 70
44 232 320 408 496 584 672 760 88
57 271 385 499 613 127 841 955 114

S. A Al-Ta'an



A =40 mm (clear cover to the stirrups),
B = 10 mm (diameter of stirrups),
C =20 mm for bars with diameter <35 mm, for bars with dia. 44 and 57 mm
C= db /2
D = clear distance between bars and equal to whichever is greater of the
following limits:
i. 25 mm,
ii. Bar diameter,
iii. (4/3) of the maximum coarse aggregate size.

B

Alc D
ey

Figure (5.3) Bars arrangement

L9

Table 20.6.1.3.1- Specified concrete cover for cast in-place nonprestressed concrete
members

Concrete exposure Member Reinforcement Specified cover
Cast against and All All 75
permanently in contact
with ground
Exposed to weather or in All No. 19 through No. 50
contact with ground 57
No. 16 bar, W31 or 40
D31 wire, and
smaller
Not exposed to weather or No. 45 and No. 57 40
in contact with ground Slabs, joists, and No. 35 bar and 20
walls smaller
Beams, columns, | Primary, reinforce- 40
pedestals, and ment, stirrups, ties,
tension ties spirals, and hoops

5.2.2 Determination of Cross Section Dimensions and Steel Area
When the cross-section dimensions and area of steel are unknown, the steps
below may be followed:

I. Assume a certain value for the reinforcement ratio (omax. = 2 2 Pmin.) »

ii. Calculate the shape factor k, from Equation (5.4)
k, = p.f,L—pom/2)
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iii. Calculate (bd?) from the following Equation:

bd?=M,/k,

Iv. Choose a suitable dimensions for b and d, and usually b is fixed first and
then d is calculated from (d = Vbd?/b). to the value of d add the clear
cover, stirrup diameter, half bar diameter to get the value of h:

h =d + clear cover + stirrup diameter + dy, / 2. Refer to ACI Code
(20.6.1) for the concrete cover.

v. The value of h then rounded to the nearest (25 or 50 mm),

vi. Calculate a new value of d = h — clear cover — stirrup dia. —d, / 2

vii.  Calculate a new value of kp:

Mo
" bd?
viii. Calculate the value of p as shown in the previous section or from

. | f
Equation M, /(f.bd?) = o(l-0.590) , @ =22
f

c

Example (5.2)

Find the dimensions b, h, d, and area of steel for a reinforced concrete
rectangular beam to carry a factored (ultimate) M, =360kN.m. f, =30MPa and
f, = 400MPa.

Solution
Assume ¢ = 0.9 and it later on after determining the dimensions and area of
steel.

My =360/0.9 =400kN.m

Choose a suitable value for p so that (omax. = 2 2 Pmin.) »(0.020> p >0.0035)

For example try p = 0.012 (about 60% of pmax.)
400

m=——"__ -1569
0.85x 30
Ky, =0.012x 400(1— 0.012x15.69/2) = 4.35MPa < Max.k,, = 6.74MPa
M
bd2=—n _ 9% _ 1 091954m3 = 91954000mm3
k, 435

If b is assumed equal to 300 mm, then d equal to:
d =+/91954000/300 = 554mm
to calculate h assume ds (diameter of stirrups) = 10 mm, clear concrete cover =

40 mm, and dp (20 to 30 mm)
h=554+40+10+25/2=617mm
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This dimension is not practical, then use h = 600 or 650 mm, with h = 650 mm d

will equal to:
d =650—-40-10-25/2=587mm recalculate k, since d is changed
-0 _3g7wPa
0.3x0.587
P 1_\/1_ 2x3.87x1569 | _ o1 oec
15.69 400
A
Or use p—,y:a) after calculating ,M” 5 = 04 5 =0.129
fe fob.d 30x0.3x0.587

f
From Table (5.2) o =""% - 0.1405, p=0.01054
fe

o =0.01055x 300 x 587 =1858mm?
Referring to Tables (5.3 and 5.4), use 4# 25 = 1964 mm? , which requires 290

mm width.

300mm
% v
71 7
7 7
S
| = g
Figure (5.4) Arrangement el o
Of bars for Example (5.2) ©
A#25
o000 74
Example (5.3) 72

A one-way slab is simply supported on an effective span of 4.0 m (c/c) and

carries a working live load of 5.0 kPa, and a finishing DL of 2.0 kPa.
f, =20MPa and f, =400MPa. Find the necessary thickness and area of steel.

Solution
To find the required thickness, refer to Table (5.2), the minimum thickness

> span _ 4000 _ 5 00mm to avoid excessive deflection. Take a strip equal to

- 20
1.0 width for the design sake.
The ultimate load on the slab = w; =1.2(2 + 4.8) +1.6 x5=16.16kPa
External factored (ultimate moment) equal to:
My =16.16(4)? /8 =32.32kN.m/m

My >32.32/0.9=35.91kN.m/m
The effective depth of the slab d =200 -20 — dp / 2 =200 -20 — 12/2 =174 mm

10
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Max.M , = 4.56 x1(0.174)% =138.1kN.m/m > M, =35.91kN.m/m

The section is under reinforced p< p, ..
m = 400/(0.85x 20) = 23.53

K :&5912:1.1%%
1x0.174

p:L 1_\/1_2><1.19><23.53 _0.00309
23.53 400

A =0.00309x1000 x174 =538mm? /m
Referring to Table (5.5) for groups of bars in slabs,

Table (5.5) Area of groups of Bars in Slabs one meter width

dy Spacing of bars (mm)
50 75 100 | 125 | 150 | 175 | 200 | 225 | 250 | 275 | 300

6 | 560 | 373 | 280 | 224 | 187 | 160 | 140 | 124 | 112 | 102 | 93

8 |1000| 667 | 500 | 400 | 333 | 286 | 250 | 222 | 200 | 182 | 167

10 | 1571 | 1047 | 785 | 628 | 523 | 449 | 393 | 349 | 314 | 285 | 262

12 | 2260 | 1507 | 1130 | 904 | 753 | 646 | 565 | 502 | 452 | 411 | 377

16 | 4020 | 2680 | 2010|1608 | 1340|1149 1005 | 893 | 804 | 731 | 670

20 | 6280 | 4187 | 3140|2512 | 2093 | 1794|1570 | 1396 | 1256 | 1142 | 1047

22 | 7600 | 5067 | 3800|3040 | 2533 | 2171|1900 | 1689 | 1520 | 1382 | 1267

25 | ---- | 6547 | 4910|3928 | 3273 | 2806 | 2455 | 2182 | 1964 | 1785 | 1637
28 | ---- | 8213 | 6160 | 4928 | 4107 | 3520 | 3080 | 2738 | 2464 | 2240 | 2059
32 | ---- 110720 | 8040 | 6432 | 5360 | 4594 | 4020 | 3573 | 3216 | 2924 | 2680
35 | ---- 1128279620 | 7696 | 6413 | 5497 | 4810 | 4276 | 3848 | 3498 | 3207

(#10@ 125 mm c/c = 628 mm?/m, or #12 @ 200mm c/c = 565 mm?/m).
Or the spacing can be calculated manually as shown below:

No. of bars =538/ 113 =4.76

Sps. = 1000/ 4.76 = 210 mm

Use 200 mm spacing c /c

Provided As = (1000/200)113 = 565 mm?/ m

>65 =0.00283> Min.py =0.0018

P9 = 1000x 200

Since the slab is one-way (load transferred in the span direction) shrinkage and
temperature steel must be provided in the perpendicular direction:

0.0018 x 1000 x 200 = 360mm?2 /m

#10 bars every 200 mm c/c provide an area = (1000/200)79 = 395 mm? as shown
in the figure below.

11
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200mm

A

e o o o -
o \ / See
S #10@200m #12@200m oo
L:I:IL|A 3'8 LIIAIIIII:I
200mm 200mm

Figure (5.5) Arrangement of steel for Example (5.3)

Ribbed slabs

Ribbed slabs is a slab with small ribs spaced uniformly and covered with a
thin slab with thickness ranging between 50-75 mm. A ribbed slab must
satisfy the following three limitations:

i. Ribwidth b, >100 mm,

ii. Rib depth <3.5 by, and

iii. Clear spacing between ribs should not exceed 750 mm.
slab not satisfying the above three limitations has to be considered as a beam-

slab system.

Example (5.4)
Resolve Example (5.3) using one-way ribbed slab.

Solution
To find the required thickness, refer to Table (5.1), the minimum thickness

h> % = &go =250mm to avoid excessive deflection.

Self-weight of one rib / m =[0.2(0.1+0.13)/2]24 + 0.6x0.05x24 = 1.27 KN/m

Self-weight / m? = 1.27/0.6 = 2.12 kPa 50
- U U
||
[

|
I
100 500 100

The ultimate load on the slab = w, =1.2(2+2.12) + 1.6 x5=12.94kPa
External factored (ultimate moment) equal to:

M, =12.94(4)* /8 =25.88kN.m/m

M, >25.88/0.9=28.76kN.m/m

The effective depth of the slab d = 250 -20 — d, / 2 = 250 -20 — 12/2 =224 mm
Max.M , =4.56 x1(0.224)* =228.8kN.m/m > M = 28.76kN.m/m

The section is under reinforced o < p, ..

12
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m = 400/(0.85x 20) = 23.53

k =0.02876/(1x 0.224%) = 0.57MPa

1 1_\/1_ 2x0.57x 2353
2353 400

0 }: 0.00145

A, =0.00145 x 1000 x 224 = 325mm? /m
Min.A, =0.0018 x 1000 x 250 = 450mm? /m
A, /'rib = 0.6 x 450 = 270mm? / rib , use 1# 20 for each rib =314 mm?2,

The top slab has to be reinforced using shrinkage and temperature
reinforcement,

A, =0.0018 x 1000 x 50 =90mm? /m , max. spacing = 5x50 = 250 mm or 450 mm,

therefore max. spacing = 250 mm, refer to Table (5.4) above, use # 6 @ 250 mm
c/c both directions.

5.3 Design of Double Reinforced Rectangular Sections

When the beams dimensions are fixed for architectural reasons or because of its
existence in a certain location, and the maximum nominal moment (Max.M,) as
a single reinforced section is less than the required nominal flexural strength
(M,), additional steel in tension and compression must be used to increase the
moment capacity. The compression steel as mentioned previously may be used
to act as:

I. Stirrups hanger,
Ii. To decrease the long-term deflection due to creep and shrinkage, and
Iii. in zones where moment reversal may occur.

The design method starts by comparing (Max.M,) with the required nominal
flexural strength (M,). If (M, > MaxM,), the beam must be designed as a double
reinforced section, otherwise it is a single reinforced section, i.e.; (0 < 0, )-

The required flexural strength is divided into two parts, the first one (Mn;) equal
to (Max. M,), Figure (5.6)

My = Max.M , = Max .k b.d? (5.7)
As1 = Pmax.-b.d (5.8)

Or As; may be calculated as follow:

AS]_ M nl

= 5.9
fy(d —amax./2) )

13
S. A. Al-Ta'an



The other part of the moment (M) equal to:
Mn2 =Mp -Mpy (5.10)

The two forces of the couple (Mn,) equal to:

C,=T,=M,,/(d-d) (5.11)
A, =T,/ 1, (5.12)
As =As1 + Ago (5.13)
Check the stress in the compression steel, c=a__ /4,
. —600—4)
C
b :
V | _FO 8f., - - =Af
CT / % q [/ C.=085f ab : ® < : __ o
! i N + 1A | As
M . I I i&
2=d-a/2 I I(d-d)
| As? | — +
A ; : fs=A1tAp
o > , @ —T> o
“““ Ni2
M,=T,z=C,.z Tl:Aﬂ'fy M, :Tz(d_d') Mn:Mn1+Mn2
—k, bd? =C,(d-d")

Figure (5.6) Design of double reinforced sections
If f, > f this means the compression steel will reach yielding, and to calculate

the area of the comp ed first:
fg = fy —0.85f; (5.14)
If f, < f, then the effective stress equal to:
fo = fq —0.85f, (5.15)
The area of the compression steel equal to:

A =C,/f,, (5.16)

The ACI recommend that transverse reinforcement (stirrups, ties, or equivalent
welded wire fabric) should be used where there is compression steel to avoid the
probability of bucking.

EXAMPLE 5.5
A rectangular beam with b =250 mm, h =500 mm is simply supported on an
effective span of 5.0 m. The beam carries a uniformly distributed working live

14



load of 30 kN/m and a uniformly distributed working dead load of 10 kN/m
(excluding the beam weight). Calculate the necessary area of steel. f, = 20MPa

and f, = 400MPa.

SOLUTION

Calculate the beam weight and add it to the DL,

Beam weight = 0.25x0.5x1x24 =3.0kN/m

Total dead load=10+2=13 KN/m

The factored (ultimate) load w, =1.2x13+1.6x30=63.6kN/m

The factored (ultimate) external moment M, = 63.6(5)2 /8 =198.75kN.m

Assume a value for ¢ to calculate the required M, , a minimum value of 0.817
can be assumed with (&, =0.004, p,, =0.0155), or (¢ =0.9, 0.005= ¢,

Pra. = 0.0135, Maxk, =4.56MPa ), then M, equal to:
Mp >198.75/0.9 = 220.8kN.m

Assume an effective depth d = 410 mm, since the reinforcement will be arranged
in two layers. The maximum nominal flexural strength equal to:

Max.M, = 4.56 x 0.25x 0.41* = 0.191.6MN.m = 191.6kN.m < requiredM , = 220.8kN.m
Therefore the beam must be designed as a double reinforced section.

Mp1 =Max.M, =191.6kN.m

As1 = 0.0135x 250 x 410 =1384mm?

a=0.32d =0.32x410=131mm
c=0.375d =0.375x410=154mm.
Assume d'= 60 mm,

i, = 19460 600y 366 2MPa
154

fo = fo —0.85f, =366.2 — 0.85x 20 = 349.2MPa
Mpo =M — My =220.8—-191.6 = 29.2kN.m

C,=T,=M_,/(d—d’)=0.0292 /(0.41—0.06) = 0.0834 MN

As2 = 0.0834/400=209 mm?
As = 1384 + 209 = 1593 mm?
As =0.0834/349.2 =239 mm?

Refer to Tables (5.2) and (5.3) to choose the bars, there are many choices to
provide the reinforcement, 3#22 + 3#16 = 1743 mm?, in two layers in the
tension zone, and 2 #16 in the compression zone, Figure (5.7). Check the
assumed effective depth:

d=500-40-10-22-25/2=415mm

15



Which is greater than the assumed value by 1.2%, if the calculation is repeated
for this value of (d) the new area of steel will not differ from too much from the

final value.

250mm
F——F
7L —L
e 2#16 £  Figure (5.7) Arrangement of the
S 5 bars for Example (5.5)
o —
o <
ok 3#22+3#16
oo o | T
7L

EXAMPLE (5.6)
A rectangular beam with b = 300 mm, h = 600 mm carries a working DLM of

100 kN.m and a LLM of 150 kN.m. f, =30MPa and f, =345MPa.calculate the
required area of steel so that p, =[A, /(b.d)] =0.35p,t0 limit the deflection
according to the recommendation of the ACI Committee 435.

SOLUTION
The external factored (ultimate) moment equal to:
M, =1.2x100+1.6 x150 = 360kN.m

30 600

pp =0.85x0.836 =0.0392
345600 + 345

1 =0.35x0.0392=0.0137
Form the equilibrium equation C =T
0.85x30xaxb=0.0137b.d x 345

a=0.185d
This value is less than 0.31d =afor (&, =0.005, p,, =0.0232) and (¢=0.9), the

total required nominal flexural strength equal to:
M >360/0.9 =400kN.m

The required nominal flexural strength of the single reinforced beam (M;;) equal
to:

M = 0.85x 30 x 0.185d.b(d — 0.185/2) = 4.280.d >
It is possible to use Equation (5.4) to find k,, m=345/(0.85x30) =13.53:

k, = p.f,(L— pm/2) = 0.0137 x 345(1 - 0.137 x13.53/ 2) = 4.28MPa

Assume d = 510 mm,

16



My =4.280.d% = 4.28 x 0.3x 0.51° = 334kN.m < M, = 400kN.m

Therefore the beam must be double reinforced, and the moment must be divided
into two parts:

A =0.0137 x 300 x 510 = 2096mm?
a=0.185x510=94mm c=94/0.836=112mm
Mo =Mp — My =400 — 334 = 66kN.m

Assume d =60mm,

C,=T,=M_,/(d—-d")=0.066/(0.51-0.06) = 0.147 MN 300mm
Agp =0.147/345 = 426mm?
A A
A = 2096 + 426 = 2522mm? o o
. _ 2#20
fo =600222 %9 _ 578 6MmPa - =
o
" ' ' —
fo = fg —0.85f, = 278.6 — 0.85x 30 = 253.1MPa é o
' g o
A =0.147/253.1=581mm? s I
Use 4#25 + 2#20 = 2592 mm?, four in o000
the bottom layer and two in the upper T
layer in the tension zone and 2#20
= 628 mm? in the compression zone as
d =600—40—10—25—25/2 =513mm ~ 510mm of steel for Example (5.6)

This is approximately equal to the assumed value.

If the value of pqis not assigned to limit the deflection, it is possible to design
the section as single reinforced one with (A, =2565mm?), but the difference

between the two beams is that the double reinforced beam will have less
deflection than the single reinforced especially the long-term deflection.

5.4 Design of T-beams

The design of T-beams include determination of the flange thickness (hy),
effective flange width (b), web width (by), total depth (h), and area of steel (As).
The thickness of the flange (hy) is determined before designing the beam. The
effective width (b) depends on the span and distance between the beams which
determined during preparing the preliminary drawings, and therefore the web
dimensions and area of steel are unknowns. When choosing the web dimensions,
the following conditions must be satisfied if possible:

I. Keeping the reinforcement ratio low to avoid excessive deflection,

ii. Keeping the shear strength that depends on (b,,.d)and (f(;)more than the
external factored shear force,

17



iii. In continuous beams the dimensions (b,) and (d) are compatible with the

requirements of the negative moment region, where the section is
designed as a rectangular section with dimensions (b, .d) .

In addition to the longitudinal (main) reinforcement, the ACI code recommends
that the flange must be reinforced perpendicular to the longitudinal axis of the
beam in locations where the main slab reinforcement is parallel to the beam. The
transverse reinforcement should be designed to carry the factored load on the
cantilever part of the flange with a span [(b-by)/2] as shown in the Figure below.
The maximum spacing for this reinforcement should not exceed 5h¢ or 450 mm.

YYY VYV VYV VY

(b-bu)/2 (b-bu)2

Figure (5.9) Distribution of reinforcement
on the top of the flange of a T beam o

b

If the flange is in tension (Negative moment region), the reinforcement is placed
at the top and part of it should be distributed in the effective flange width (b) or
(span/10) whichever is smaller. If (b) > (span/10) longitudinal reinforcement
should be placed on the exterior part of the flange between the limits of (b) and
(span/10) to limit the cracks that may occur outside the web.

To find the area of steel, calculate the nominal flexural strength (M) assuming
that the whole flange is carrying compression (a = hy):

| (5.17)
M s =0.85f..hs b(d —hy /2)

This value is compared with the required My, if:
I. Mp< My, therefore a < hy, and the beam is treated as a rectangular beam

with dimensions (bxd),

Ii. Mp= My, a = hy, and the beam is treated as a rectangular beam with
dimensions (bxd),

ii. Mp> My, a> hy, and the beam is a T-beam.

In the last case, the area of steel is composed of two parts, the first one
equalizing the compression on the flange (outside the web sides) Ass:

At =0.85fchs (b—by)/ fy (5.18)

18



The nominal strength for this part equal to:
M1 = At . fy(d —hs /2) (5.19)

The second part of the moment My, is carried by a rectangular section of
dimension (by.d).The area of steel for this part (Asw) is calculated as for single
reinforced sections.

EXAMPLE 5.7
A reinforced concrete floor composed of a slab 100 mm thick and

supported on a series of beams 1.30 m center to center and a span of
6.0 m, Figure (5.10). by, = 300 mm, h =600 mm, My = 720 kN.m.
f, =20MPa and f, =400MPa . Find the necessary area of steel.

SOLUTION

Calculate the effective flange width (b):
b<span/4=6.0/4=1.5m

174
1400mm
A

| 300Imm 10m  300mm  jom 30(imm
17 1 17 1 1 41

Figure (5.10) Reinforced concrete floor of Example (5.7)

b<b,, +16h¢ =300+ 16 x100 =1900mm

b <by, +clear distance between beams =300 +21000=1300mm

Therefore b = 1.30 m.

Assume d =510 mm, since the reinforcement may be arranged in two layers,
assume also ¢ =0.9 and its value will be checked later.

The required flexural strength M, equal to:

M >720/0.9 =800kN.m

If the whole flange is under compression, the nominal flexural strength M

equal to:
Mps =0.85x20x0.1x1.3(0.51-0.1/2) =1.017MN.m =1017kN.m > 800kN.m

Therefore a < hs and the beam can be considered as a rectangular beam with
dimensions (bxd). to calculate the required area of tension steel, use Equations

(5.4.and 5.5)
kp = Lz =2.37MPa
1.3x0.51
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400

m=——— 2353
0.85x 20

p:L 1_\/1_ 2x2.37x2353 | _ 00y
23.53 400

A =0.0064 %1300 x 510 = 4243mm?
Compare p,, with p, ... to check whether the beam is under or over reinforced:
4243

PW = 300% 510

p, - 085x20x01003-03)
f 400

4250

1 = 300x510
From Table (4.3), (& =0.005,0.0135= pmax, and p,.,, =0.0135 ), therefore

pw,max.equal tO:
Pw.max. = 0.0135 + 0.0278 = 0.0413> p,,, = 0.0277

the beam is under reinforced, use 3#35 and 3#25 = 4359 mm?, the actual value
of d equal to:

=0.0277

—0.00425m? = 4250mm?

=0.0278

~ 3x962x67.5+3x491x1225
Yo = 4356 -
d= 600 - 86 = 514 mm, a small difference of 0.78%. The value of a is calculated
for this area of steel,

a 4356 x 400
0.85x 20 x1300

86mm

=79mm - _77/0.85=93mm

&, = (514 -93)0.003/93=0.01358 > 0.005, therefore ¢ = 0.9 as assumed before and
the beam is under reinforced.

S
S
Figure (5.11) Arrangement of 3435+ S
bars for Example (5.7) 3495 ok
o 0o 0 2
o o0
,300mm
A A
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EXAMPLE 5.8
In example (5.7) if the moment M, is increased to 960 KN.m, determine the
required area of steel.

SOLUTION

Assume a value of 0.9 for gsubjected to a later check. The required nominal
flexural strength M, equal to:
M, >960/0.9=1067kN.m>M  =1017kN.m

Therefore a > hs and it is a T beam. First the area of steel required to equalize
the compression in the wings of the flange is calculated, from the previous
example it is Ast =4250 mm?. The nominal flexural strength for this area of steel
equal to:
Mp1 = Ast . fy(d —hs /2)
=0.004250x 400(0.51—0.15/2) = 0.739.5MN.m = 739.5kN.m
The remaining moment M, equal to:
M, =1067 —739.5 = 327.5kN.m

0.3275

k, =——-">_—42MPa
0.3x0.51°

o L 1_J1_§i££52§§§ _0.0123
23.53 400

A, =0.0123 x 300 x 510 =1882mm?

A=A, +A, =4250 +1882 = 6132mm?
6132
= 300x510
Compare p, =0.0382with p,, .., =0.0413, therefore the section is under
reinforced and ¢, >0.005and ¢ = 0.9.
Use 3 # 35+6#28 =6582 mm? can be used in three layers as shown below. The
value of d = 600 — 40 -10 - 35 — 25-28/2 = 476 mm, or can be calculated exactly
as:
3x962x67.5+3x616x124+3x616x177
o= 6582

=0.0401

=114mm

d =600 - 114 =486 mm, the difference is 4.7% while the provided area of steel
is already 7.3% more than required. However, if the area of steel is recalculated
for this new depth of (486 mm), the area of steel = 6584 mm?2 which is
approximately equal to the provided area of 6582 mm?.

w

3+

w

(@]

+
504mm
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Figure (5.12) Arrangement of bars
for Example (5.8)

5.6 DESIGN OF BEAMS WITH SPECIAL SHAPES

When the area under compression is not rectangular, the steps below may be
followed to find the required area of steel:

I. Assume a value of the lever arm (z = 0.8-0.9d),

1. Assume a value of ¢ subjected to later check,

Iii. From the first equilibrium equation, calculate Cand T: C =T = Mn/z,

iv. Calculate the required area under compression: Ac = C/(0.85fc"),

v. Divide the area into components (triangles and rectangles) and calculate

the centroid of this area (yc),z=d - yc

vi. Repeat steps 3 to 5 until the values converge.

vii. The required area of steel then equal to As = 0.85f; (Ac)/fy,

viii. Compare this area of steel with maximum As, to check whether the

section is under or over reinforced,
ix. Calculate ¢ to finde;,¢ and compare with assumed value at the

beginning.
EXAMPLE 5.9

The section in Figure (5.13) is subjected to a factored moment M, = 360 kN.m.
f, =20MPa and f, =276 MPa , find the required area of steel.

SOLUTION
Assume¢=0.9
M, >360/0.9=400kN.m
Assume z = 500 mm (0.77d), since the area at the top is a triangle,
C=T=M,/z=04/05=0.8MN

C 0.8
A =085 0.85%20
This area is more than that of the triangle (22500 mm?) at the top, therefore a >

=0.047059m? = 47059mm?

150 mm:

47059 = 22500 + 300(a —150) - _

a=232mm £ /\ I o
e rel
< —
&) - e o
Ny
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c=232/0.85=273mm
_ 650-273

273
The section is in the transition zone, and ¢ equal to:
¢ =0.65+(0.00413-0.002)(250/3) =0.829

Assume ¢=0.8
Mp >360/0.8=450kN.m

&t 0.003=0.004143

C=T=M,/z=0.45/05=0.9MN

C 0.9

— = =0.052941m? =52941mm?
0.85. 0.85x20

AC =
52941 = 22500+ 300(a —150)

a=251Imm
c=251/0.85=295mm

_ 650295

&t 0.003=0.00361< 0.004

The section should be designed as a double reinforced section, the required
nominal flexural strength equal to:
M, =360/0.817 = 440.6kN.m

Take the value of a=a,, =0.36d = 234mmand calculate the maximum area under
compression:
Max.A. =22500 + (234 —150)300 = 47700mm?

The centroid of this area:

~22500(100) + 300(234 — 150)(150 + 42)

¢ 47700
Z=650-149 =501mm
The maximum nominal flexural strength equal to:

=149mm

Max.M_ =M _ =0.85f (Max.A )z =
0.85x20x0.477x0.501=406.3kN.m
_ 0.85f,.Max.A, _ 0.85x 20x 0.0477
- fy - 276

Mpo =440.6 — 406.3=34.3KN.m

=2938mm?

s1
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C, =T, =0.0343/(0.65 — 0.06) = 0.0581MN
Agp =0.0581/276 = 211mm?

A =2938+211=3149mMM" 56 343D + 24 25 = 3394 mm?
¢=234/0.85=275 mm , fo =6002°2=%0 _ 469MPa > f, = 276MPa

. =0.0581/(276 — 0.85x 20) = 224mm?, use 2#12 =226 mm>.
As

5.6 REINFORCING VERTICAL FACES FOR DEEP BEAMS

Deep beams require longitudinal reinforcement in addition to the main
tension reinforcement to limit the width of cracks that extend from the
tension face upward (in case of positive moment), or downward (in
case of negative moment). The ACI recommend that for beams with
total depth more than 900 mm, additional steel should be provided on
the vertical faces between the mid depth and the tension face, the
spacing of this reinforcement should not exceed:

s =375(276/ f,)—2.5C, <305(276/ f,) (5.20)

Where C. = clear concrete cover to the vertical face of the beam, and f; =
working steel stress which may be taken = (2f,/3). The used bars diameter
ranges between 10 to 16 mm. Such additional reinforcement may be included in
the flexural strength calculation.
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Introduction
TYPES OF SLABS

In reinforced concrete construction, slabs are used to provide flat, useful
surfaces. A reinforced concrete slab is a broad, flat plate, usually horizontal,
with top and bottom surfaces parallel or nearly so. It may be supported by
reinforced concrete beams (and usually cast monolithically with such beams), by
masonry or reinforced concrete walls, by structural steel members, directly by
columns, or continuously by the ground.
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{b) Two-way slab

{c) One-way slab (d) Flat plate
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(e) Flat slab {f) Grid or waffle slab

Fig. (6.1) Types of Slabs, (a) One-way slab, (b) Two-way slab, (c) One-way
slab, (d) Flat plate, (e) Flat slab with drop panel, (f) Two-way ribbed slab.

Approximate thickness of a two-way slab supported on beams or walls can be
found by the following equation:

Perimeter
180

h:

The coefficients in Tables (1-4) can be used to bending moments in the x and y-
directions. The values in the Tables are based on the assumptions that the
supports are rigid.

The deflection for the two perpendicular strips are equal at the intersection
point:

4 Swely  5Swply
@7 384E1 P T 384EI

WaLLc}l = WbLLI})
we/wy, = (Ly/LE)=1/m* m=Lg/Ly
w, = wy/m*

m*+1

)

wr =w, +wp = wp/m* +wp, = wy(

m* 1
Wp = WT(m4+1) Wq = WT(W)



Simple supports
on all four edges

Percentage of load transferred in each direction

La /Ly 1.0 2/3=0.667 1/2=0.5 1/3=0.333 1/4=0.25

Wa/ W 1/2=.5 | 81/97=.835 | 16/17=.941 | 81/82=.988 | 256/257=.996

Wp/wr 1/2=5 ]16/97=.165| 1/17=.059 | 1/82=.012 | 1/257=.004
EXAMPLE 1:

A two-way reinforced concrete building floor system is composed of slab panels
measuring 6.0x7.5 m (c/c) in plan, supported by shallow column-line beams cast
monolithically with the slab (350x500 mm). Using f;=30 MPa and f, = 400
MPa, design a typical exterior panel to carry a service finishing DL = 2.67 kPa
and live load of 5 kPa in addition to the self-weight of the floor.

SOLUTION:

L.=6-0.35=5.65m

L, =7.5-0.35=7.15m

ho Perimeter _ 2(5.65+7.15)
180 180

Use h =175 mm,
Self-weight of the slab = 0.175x1x1x24 = 4.2 kPa,

=0.142m =142mm
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Total DL = 4.2 + 2.67 =6.87 kPa,

Ultimate dead load on the slab w4 = 1.2x6.87 = 8.24 kPa.
Ultimate live load on the slab wy. = 1.6x5 = 8 kPa.

Total ultimate load on the slab wys = 8.24 + 8 = 16.24 kPa.

Moments in the short direction:

m=0L,/Lp=5.65/7.15=0.79
referring to Tables (1-4), the slab is case (9).
Negative moment:

From Table 1, the coefficient equal to: 0.075;

—veM ;= 0.075x16.24(5.65)% = 38.79kN.m/m
—veM ;2 =38.79kN.m/m

Positive moment:
+veM,; = 0.029 x 8.24(5.65)2 = 7.63kN.m/m




+veM,,; = 0.042 x 8(5.65)? = 10.73kN.m/m

+veM,, = 7.63 + 10.73 = 18.36kN.m/m
gport = 175 -20 -12/2 =149 mm

Moments in the Long direction:

Negative moment:

From Table 1, the coefficient equal to: 0.055;

—veM 3 = 0.017x16.24(7.15)? =14.11kN.m/m
—veM ;2 =0kN.m/m
Positive moment:

+VeM ygq = 0.01x8.24(7.15) = 4.21kN.m/m

+veM g =0.017x8(7.15)? = 7.16kN.m/m

+VeM 5 =4.21+7.16 =11.37kN.m/m

diong = 149 — 12 =137 mm

Summary of two-way slab design

Short direction

Long direction

-ve My | +ve M, -ve My -ve M, +ve My | -ve M,
My 38.79 18.36 38.79 14.11 11.37 0
M, 43.1 20.4 43.1 15.67 12.63 0
d 149 149 149 137 137 137
kn (MPa) 1.94 0.92 1.94 0.83 0.67 0
f,/(0.85f.) | 15.69 15.69 15.69 15.69 15.69 15.69
p 0.00505 | 0.002343 | 0.00505 0.00211 | 0.0017 0
Aq 752 349 752 289 233 0
Min. As 0.0018x1000x175=315 mm?/m
Req. As 752 349 752 315 315 315
Prov. As #12 #10 @ #12 #10 #10 #10
@150 | 200 mm | @150 mm | @250 mm | @250 @250
mmc /c cl/c clc clc mmc /c | mmc/c

Load transferred in both directions:

Short direction:

W, =0.83%16.24 = 13.48 kN/m (13.48/2 = 6.74 kN/m) on each support

Long direction:

wp =0.17%16.24 = 2.76 KN/m (2.76/2 = 1.38 kN/m) on each support




Table 1
Coefficients for negative moments in slabs

M, =C,wL,
M; = Ciwi2 w = Factored uniform dead load + live load
i Boundary Conditions
; § Casel | Case2 | Case3 | Cased | Case5 | Case6 | Case? | Case§ Case 9
= | @
A [ ) |
& 0.045 0.050 | 0.075 | 0.071 0.033 | 0.061
0 C; 0.045 | 0.076 | 0.050 0.071 0.061 0.033
C; 0.050 0.055 | 0.079 | 0.075 0.038 | 0.065
" (&5 0.041 0.072 | 0.045 0.067 [ 0.056 | 0.029
C, 0.055 0.060 | 0.080 | 0.079 0.043 | 0.068
- Cy 0.037 | 0.070 | 0.040 0.062 | 0.052 | 0.025
@, 0.060 0.066 | 0.082 | 0.083 0.049 | 0.072
e c; 0.031 0.065 | 0.034 0.570 | 0.046 | 0.021
(& 0.056 0.071 | 0.083 | 0.086 0.055 | 0.075
= C; 0.027 | 0.061 | 0.029 0.051 0.041 | 0.017
C; 0.069 0.076 | 0.085 | 0.088 0.061 [ 0.078
o Cy 0.022 | 0.056 | 0.024 0.044 | 0.036 | 0.014
G 0.074 0.081 0.086 | 0.091 0.068 | 0.081
i Er 0.017 | 0.050 | 0.019 0.038 | 0.029 | 0.011
(& 0.077 0.085 | 0.087 | 0.093 0.074 | 0.083
. Oy 0.014 | 0.043 | 0.015 0.031 | 0.024 | 0.008
(13 0.081 0.089 | 0.088 | 0.095 0.080 | 0.085
her Cy 0.010 | 0.035 | 0.011 0.024 | 0.018 | 0.006
G 0.084 0.092 [ 0.089 | 0.096 0.085 | 0.086
0 e; 0.007 | 0.028 | 0.008 0.019 | 0.014 | 0.005
C, 0.086 0.094 | 0.090 | 0.097 0.089 | 0.088
o G; 0.006 | 0.022 | 0.006 0.014 | 0.010 | 0.003
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Table 2
Coefficients for dead load positive moments in slabs

w 4 = Factored uniform dead load

Boundary Conditions

=
; ;?: Casel | Case2 | Case3 | Cased | Case5 | Case6 | Case7 | Case8 | Case9
N . | B |
C, | 0036 | 0018 [ 0.018 [ 0.027 | 0.027 | 0.033 | 0.027 | 0.020 | 0.023
o Cy | 0.036 | 0.018 [ 0.027 | 0.027 | 0.018 | 0.027 | 0.033 | 0.023 | 0.020
C; | 0.040 | 0.020 | 0.021 | 0.030 | 0.028 | 0.036 [ 0.031 | 0.022 | 0.024
o Cy | 0033 [ 0.016 | 0.025 | 0.024 [ 0.015 [ 0.024 | 0.031 | 0.021 | 0.017
C, | 0.045 | 0.022 | 0.025 | 0.033 | 0.029 | 0.039 | 0.035 | 0.025 | 0.026
— C; | 0029 | 0.014 | 0.024 | 0.022 | 0.013 | 0.021 | 0.028 | 0.019 | 0.015
C, | 0.050 | 0.024 | 0.029 | 0.036 | 0.031 | 0.042 | 0.040 | 0.029 | 0.028
- C; | 0026 | 0.012 | 0.022 | 0.019 | 0.011 | 0.017 | 0.025 | 0.017 | 0.013
C, | 0.056 | 0.026 [ 0.034 [ 0.039 | 0.032 | 0.045 | 0.045 | 0.032 | 0.029
e Cy | 0023 | 0.011 [ 0.020 | 0.016 | 0.009 | 0.015 | 0.022 | 0.015 | 0.010
C, | 0.061 | 0.028 | 0.040 | 0.043 | 0.033 | 0.048 | 0.051 | 0.036 | 0.031
o Cy | 0.019 | 0.009 | 0.018 | 0.013 [ 0.007 | 0.012 | 0.020 | 0.013 | 0.007
C, | 0.068 | 0.030 | 0.046 | 0.046 | 0.035 | 0.051 | 0.058 | 0.040 | 0.033
i Cy | 0.016 | 0.007 | 0.016 [ 0.011 | 0.005 [ 0.009 | 0.017 | 0.011 | 0.006
C; | 0074 | 0.032 | 0.054 | 0.050 | 0.036 | 0.054 | 0.065 | 0.044 | 0.034
= Cy | 0013 | 0.006 [ 0.014 [ 0.009 | 0.004 | 0.007 | 0.014 | 0.009 | 0.005
C, | 0.081 | 0.034 [ 0.062 | 0.053 | 0.037 | 0.056 | 0.073 | 0.048 | 0.036
el Cy | 0010 | 0.004 | 0011 | 0.007 | 0.003 [ 0.006 | 0.012 | 0.007 | 0.004
C; | 0.088 | 0.035 [ 0.071 | 0.056 | 0.038 | 0.058 | 0.081 | 0.052 | 0.037
0 C; | 0.008 [ 0.003 | 0.009 [ 0.005 [ 0.002 | 0.004 | 0.009 | 0.005 | 0.003
C, | 0.095 | 0.037 | 0.080 [ 0.059 | 0.039 [ 0.061 | 0.089 | 0.056 | 0.038
o Cy | 0.006 | 0.002 | 0.007 | 0.004 | 0.001 | 0.003 | 0.007 | 0.004 | 0.002
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Table 3
Coefficients for live load positive moments in slabs

w ;= Factored uniform live load

" Boundary Conditions
:f é Casel | Case2 | Case3 | Cased | CaseS | Case6 | Case?7 | Case 8 | Case9
= | @
R e o} e e | |
C; | 0036 [ 0.027 | 0.027 | 0.032 | 0.032 | 0.035 0.032 | 0.028 | 0.030
L C, | 0036 [ 0.027 | 0.032 | 0.032 | 0.027 | 0.032 | 0.035 0.030 | 0.028
Cr | 0.040 0.030 0.031 0.035 0.034 0.038 0.036 0.031 0.032
i Cy | 0033 | 0.025 | 0.029 [ 0.029 | 0.024 | 0.029 | 0.032 0.027 | 0.025
C; | 0.045 | 0.034 | 0.035 | 0.039 | 0.037 | 0.042 | 0.040 0.035 | 0.036
. Cy | 0029 | 0.022 [ 0.027 | 0.026 | 0.021 | 0.025 | 0.029 0.024 | 0.022
C,; | 0.050 0.037 0.040 0.043 0.041 0.046 0.045 0.040 0.039
o Cy | 0026 | 0.019 | 0.024 | 0.023 | 0.019 | 0.022 | 0.026 0.022 | 0.029
C, | 0.056 | 0.041 0.045 | 0.048 | 0.044 | 0.051 0.051 0.044 | 0.042
o Cy | 0023 [ 0.017 | 0.022 | 0.020 | 0.016 | 0.019 | 0.023 0.019 | 0.017
C, | 0061 | 0.045 | 0.051 0.052 | 0.047 [ 0.055 | 0.056 | 0.049 | 0.046
b C; | 0019 | 0.014 | 0.019 [ 0016 | 0.013 | 0.016 | 0.020 0.016 | 0.013
C, | 0.068 | 0.049 | 0.057 | 0.057 | 0.051 0.060 | 0.063 | 0.054 | 0.050
o Cy | 0.016 | 0.012 | 0.016 | 0.014 | 0.011 0.013 | 0.017 | 0.014 | 0.011
C; | 0074 | 0.053 | 0.064 | 0.062 | 0.055 | 0.064 | 0.700 0.059 | 0.054
vos C; | 0.013 | 0.010 [ 0.014 | 0.011 | 0.009 | 0.010 | 0.014 0.011 0.009
C, | 0.081 0.058 0.071 0.067 0.059 0.068 0.077 0.065 0.059
e Cy | 0.010 | 0.007 | 0.011 0.009 | 0.007 | 0.008 | 0.011 0.009 | 0.007
C; | 0.088 | 0.062 | 0.080 | 0.072 | 0.063 | 0.073 | 0.085 0.070 [ 0.063
0 C; | 0.008 [ 0.006 | 0.009 [ 0.007 | 0.005 | 0.006 | 0.009 0.007 | 0.006
C, | 0.095 | 0.066 | 0.088 | 0.077 | 0.067 | 0.078 | 0.092 | 0.076 0.067
o C; | 0.006 | 0.004 | 0.007 | 0.005 | 0.004 | 0.005 0.007 | 0.005 | 0.004




Table 4
Ratio of load in (a and b) direction for shear in slab and
load on support

= Boundary Conditions
5 E:: Case |l | Case2 | Case3 | Cased | Case5 | Case6 | Case7 | Case8 | Case9
S| g ; | 7 :
s\ g P ¥i LI B Bl ]
w,| 050 | 050 | 017 | 050 | 08 | 071 | 029 | 033 | 067
o Wyl 050 | 050 | 083 | 050 | 017 | 029 | 071 | 067 | 033
w,| 055 | 055 | 020 | 055 | 08 | 075 | 033 | 038 | 071
e W,| 045 | 045 | 080 | 045 | 014 | 025 | 067 | 062 | 029
w,| 060 | 060 | 023 | 060 | 08 | 079 | 038 | 043 | 075
o w,| 040 | 040 | 077 | 040 | 012 | 021 | 062 | 057 | 025
w,| 066 | 066 | 028 | 066 | 090 | 083 | 043 | 049 | 079
b w,| 034 | 034 | 072 | 034 | 010 | 017 | 057 | 05I 0.21
w,| 071 | 071 | 033 | 071 | 092 | 08 | 049 | 055 | 0.83
e w,| 029 | 0290 | 067 | 029 | 008 | 014 | 051 | 045 | 0.17
w,| 076 | 076 | 039 | 076 | 094 | 088 | 056 | 061 | 086
e W,| 024 | 024 | 061 | 024 | 006 | 012 | 044 | 039 | 0.14
w,| 081 | 081 | 045 | 081 | 095 | 091 | 062 | 068 | 089
o Wyl 019 | 019 | 055 | 019 | 005 | 009 | 038 | 032 | 0.1
w,| 085 | 08 | 053 | 085 | 096 | 093 | 069 | 074 | 092
A Wyl 015 | 015 | 047 | 015 | 004 | 007 | 031 | 026 | 0.08
W,| 08 | 080 | 061 | 089 | 097 | 095 | 076 | 080 | 094
e Wyl o11 | o011 | 039 | o011 | 003 | 005 | 024 | 020 | 006
o] o092 | 092 | 069 | 092 | 098 | 096 | 081 085 | 095
o Wyl 008 | 008 | 031 | 008 | 002 | 004 | 019 | 015 | 005
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Shear Strength of Beams

7.1 INTRODUCTION

Reinforced concrete members should resist the shear forces that seldom act
alone but with bending moments, axial forces, and sometimes torsion. The
shear transfer in reinforced concrete members depends on the tensile and
compression strength of concrete. When shear failure occurs, the deflection
Is usually small and seldom ductile, and this type of failure must be avoided
in practice, and to achieve this, the shear strength of the member should be
more than its flexural strength.

The tensile strength of concrete is very small compared with its compression
strength and the shear strength is between the two. Most shear failures are
basically a diagonal tension or diagonal compression failure.

Reinforced concrete composed of two materials (concrete and steel) and the
equations used for the analysis of homogeneous members can be used for
reinforced concrete members to predict the initiation of diagonal tension
cracking and shear strength.

7.2 Shear Stresses in Homogeneous Beams

The horizontal shear stresses in homogeneous beams are useful to know the
stresses created in the beams web:

V.Q
b (7.1)
Where V = shear force acting on the cross-section, | = moment of inertia, b
= width of cross-section, and Q = moment of the area between the level
considered and the nearest face about the neutral axis.

It is possible to imagine the role of shear stresses for a beam composed of
two rectangular strips under vertical loads, Figure (7.1). If the bond between
the two strips is perfect, the deformation is as shown in Figure (7.1a). If the
bond is weak, the two strips will separate and slide over each other as shown
in Figure (7.1b). If the bond between the two strips is perfect, there are
horizontal stresses at the common interface between the two faces to prevent
sliding as shown in Figure (7.1c). Such stresses are created in horizontal
planes of beams composed of one part and its magnitude varies with the
distance from the neutral axis. Figure (7.1d) show a small part of a beam
with dimensions (bxh) subjected to a shear force V. Vertical equilibrium is



provided by vertical shear stresses. These stresses vary parabolically from
zero at the top and bottom faces to maximum at the neutral axis. The average
of theses stresses equal to vag = [V/(bxh)]. For shapes other than
rectangular sections, it is possible to use Equation (7.1) to predict the
magnitude and distribution of shear stresses.

.
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Figure (7.1) Vertical and horizontal shear stresses in homogeneous beams

In Figure (7.2) show the distribution of shear and longitudinal flexural
stresses on three elements, at the neutral axis where there are shear stresses
only (longitudinal flexural stresses = Q) Figure (7.2b) diagonal tensile and
compression are created on the element diagonals. In the compression zone
where there are both shear (v) and longitudinal flexural compression stresses
(c) Figure (7.2c) the diagonal tensile stresses on (a-a) decrease and the
diagonal compression stresses on (b-b) increases. In the tension zone where
there are both shear and longitudinal flexural tension stresses (t) Figure
(6.2d) the diagonal tensile stresses on (a-a) increases and the diagonal
compression stresses on (b-b) decrease.

Using the relationships of combining stresses (shear and flexural stresses) it
Is possible to draw stress trajectories as shown in Figure (7.2e):

tc= f/2:+4(f/2)2 +v2 (7.2)
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Figure (7.2) Diagonal stresses in a homogeneous beam, (a) uniformly
loaded beam, (b) Stresses at point A, (c) Stresses at point B, (d) Stresses
at point C, (e) Tensile stress trajectories

The resulting stresses composed of superposing the shear and flexural
stresses at any point. When the diagonal tensile stresses exceed the tensile



strength of concrete, cracks will initiate perpendicular to the stress
trajectory.

7.3 Shear Stresses in Reinforced Concrete Beams

Figure (7.3a) shows the shear stress distribution for a single reinforced
rectangular beam. The shear stress distribution above the neutral axis is the
same as that for a homogeneous beam. Figure (7.3b) shows the increase in
the tensile force (dT) that should be equalized by a shear stress (v)
multiplied by a horizontal area (bxdx), because the tensile stress of concrete
vanishes after the appearance of cracks, since (dT= vxbxdx) and (dT=dM/z),
solving the two equations:

V:d_T[E}:d_M[L}:i (7.3)
dx| b dx | zb| bz

11—
T+dT

(a) (b)
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Figure (7.3) Distribution of shear stresses in reinforced concrete sections



The zone under the neutral axis remains under a state of pure shear and the
above equation gives a measure of the diagonal tension in the cracked zone.

All codes of practices uses Equation (7.3) as an index for the shear stress and
replace the lever arm (z) by the effective depth (d):

Vv
V- 7.4
by, (7:4)

6.4 Behaviour of Beams without Shear Reinforcement

In reinforced concrete beams, inclined cracks appear in the web either
without flexural cracks (usually vertical), adjacent to it, or extension of the
flexural cracks. Inclined cracks that appear in the web of uncracked beam,
Figure (7.4a) called (web shear cracks). Inclined cracks that are extension of
vertical flexural cracks called flexure shear cracks, Figure (7.4b).

w( ‘ }M

~Splitting crack

{a) Flexural crack, {b} Inglined crack.
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7.4.1 Transfer of Shear Forces in Reinforced Concrete Beams
Shear transfer in reinforced concrete members composed of the following
actions, Figure (7.5):
I. Shear strength of concrete in the compression zone, V., 20-40% of the
external shear force
1. Aggregate interlock on the cracks faces, this action is similar to the
irregular interlock of the aggregates on rough surfaces of cracks, 33-
50% of the external shear force
ii. Dowel action, which represent the resistance of the longitudinal
reinforcement to the transverse shear forces, 15-25% of the external
shear force
Iv. Arch action in deep beams, and
v. Shear strength of stirrups (vertical or inclined).

= V, = aggregate interlock (interface shear)

I'\\ i B i V,, = sh
~———V,, = shear
\ = 2
\ / & resistance
L X
Z £
74 <
'y
~ e —i Y
L V, = dowel
force
R

— 2 —
|

Figure (7.5) distribution of shear resistance after the appearance of
inclined cracks

7.4.2 Modes of Failure
The mode of shear failure and shear strength depends on the shear span /
effective depth:

I. When a, /d > 6.0, flexure failure may occurs,
Ii. When a, /d < 6.0, shear failure mostly occurs, and in this case
various types of failure may be identified depending on a, / d:
(a) Diagonal tension failure occurs when (2.5 <a,/d <6.0), Figure
(7.6a),
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ic) Shear at cracking and failure.

(b) Shear-compression failure when (1.0 <a, / d < 2.5), Figure (7.6b),

(c) Shear-tension failure when (1.0 < a, / d < 2.5), Figure (7.6c), if the
bond between the steel and concrete is weak, and

(d) Splitting or true shear failure occurs when (a,/d <1.0), Figure
(7.6d).
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Figure (7.7) Types of shear failures, (a) diagonal tension failure, (b) shear-
compression failure, (c) shear —tension failure, (d) splitting or true shear failure
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7.5 Critical Section for Calculating the Nominal Shear Strength

The shear span has a great effect on the shear strength and shear failure, and
the worst location of the (diagonal tension failure) of a concentrated load on
a simply supported beam is not near the support but at a certain distance
from the support. The ACI Code recommends that the critical section for
shear is a distance (d) from the face of support. The zone between the face of
support and the critical section is designed for the same shear as that at the
critical section.

There are cases where the critical section for shear should be taken at the
face of support:

I. When the shear increases in the direction of the face of support, and
the support is a beam or girder and there is no compression at the
support,

ii. When there is concentrated load at a distance <d,

iii. When there is a load may create inclined crack at the face of support
and extend into the support.



-~ Critical section
v, ¥ ff
HH!;HHHHL?

-

Fig: R11.1.3 I b)—Location of critical section for shear ina
member loaded near boltom.

1 - I |
L T < V) -
| EA e e
L1 1,1
(c) {d)

[Wm x

|
- d
ML
(e) (f)
Fig. RILL3. Nce), (d), (el, (fi—Typical support conditions

for locating factored shear force V.
Figure (7.7) Critical section for shear for some cases

6.6 Shear Strength of Beams without Shear Reinforcement

The shear strength is influenced by the shear span / effective depth, tensile
strength of concrete, and the reinforcement ratio. The ACI Code
recommends the following Equation for the shear strength of concrete:

V =%(N?C' +1zopwvl\‘;l'd ]bw.d <0.2074/ f by d (7.5a)
u
Or in a simpler form:
/1.
V, = 5 € byy-d (7.5b)
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Vv, = external ultimate or factored shear force acting on the section, M, =
external ultimate or factored moment acting on the section, v,d/M, <10, the

reason for this limitation, that the moment at the points of inflection and
regions with small bending moment will result in very high shear strength.
The width of the section by, in the above Equation is that for the web when
the section is T shape.

The factor () is for the type of concrete:
I. Equal to 1.0 for normal weight concrete,
1. Equal to 0.75 for all light weight concrete, and
iii. Equal to 0.85 for sand light weight concrete.

If f.splitting strength of concrete is known then A = 1.8f, /\/fT <1.0

7.7 Role of Shear Reinforcement

Figure (7.8) shows the types of shear reinforcement:
I. Vertical stirrups perpendicular to the main tension reinforcement,
Il. Inclined stirrups with an angle > 45° to the main tension
reinforcement,
lii. Longitudinal bent up reinforcement with angle of inclination > 30e,
and
iv. Longitudinal bent up reinforcement with vertical or inclined stirrups.
Spiral bars and welded wire fabrics may be used as shear reinforcement.

> L~

<

Z

Inclined stirrups

Figure (7.8) Types of shear reinforcement
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From the figure above, the stirrups are vertical or inclined reinforcement
distributed along the span or part of it and embedded in the compression
zone and wraps around the tension reinforcement. Before the inclined cracks
Initiation there is no stresses in the stirrups, after the cracks initiation which
intersects the stirrups and tensile stresses will be developed, and the stirrups
increase the shear strength by the following actions:
I. Improve the dowel action by warping the longitudinal bars
intersecting the inclined shear cracks,
Ii. Retarding the extension of the inclined cracks thus increasing the
aggregate interlock,
Iii. Preventing bond failure when the longitudinal cracks appear.

7.8 Shear Strength of Shear Reinforcement

The vertical stirrups are the most widely used stirrups because it is easy to
shape and place. The nominal shear strength (Vs) of inclined stirrups equal
to:

V, :&.fy(sina+003a)d/ssgﬁbwd (7.6)

a = angle of inclination, if a. = 90° (vertical stirrups) , Vs becomes equal to:

Vv, :Av.fyd/SSEEde (7.7)

A, = area of both legs of stirrups = 2 A, (U- stirrups) or = 4 Ay, (w-stirrups).

Longitudinal bent-up bars act also as shear reinforcement like inclined
stirrups, and its Vs equal to:

Vg :A\,.fysinas@b\,\,.d (7.8)
The ACI Code limits the yield strength of shear reinforcement to 400 MPa,
to limit the width of inclined shear cracks.

7.9 Spacing of Shear Reinforcement

The ACI Code limits the spacing of vertical shear reinforcement to (d/2 or
600 mm) to ensure that each 45° crack may be intersected by a stirrup if

12



, the limits become (d/4 or 300 mm).v, > gbwd when v, < @bwd

The spacing of inclined shear reinforcement [0.75(d-d)] when

)]. ‘d-limits become [0.375(d, the Vv, >

It

2 b,d when V, <

f
b, d
3

7.10 Minimum and Maximum Limits for Shear Reinforcement

The ACI Code limits the minimum strength of shear reinforcement by:

Miny, =%de (MN) or MinA, =

MinV, =

b, S
3f

y

‘/Ebwd (MN) or Min.&:‘/fi

16 16

The ACI Code recommends that when:
V, <V,_/2 there is no need to use minimum shear reinforcement.

The ACI Code limits also the maximum shear strength for shear
reinforcement and reinforced concrete members by:

MaxV, =V, + MaxV, = ‘/?“ b,d + 2‘/; b,d = 5‘/? b, d

(mm?)

b, s (mm?)

f

y

6

Table (6.1) Summary of design for shear reinforcement according to ACI Code

Zone Limits of V, Ay Spacing
1 ' V, <V /2
f n=<Vc
0<Vh Swa-d Noshear | ===
12 reinforcement
required
2 ' . by.s d/ 2 or 600 mm
V. +MinV. >V >‘/T°b d Min. Y= or
¢ L 3fy
f.b,.s
161,
3 ' Ve.S d/ 2 or 600 mm
V, + MinV, <V, s\/chW.d :
2 fy.d
4 ' V.S d/4 or 300 mm
5 [, f s
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EXAMPLE (6.1)

Determine the minimum dimensions of a rectangular beam if the shear is
controlling the design without using shear reinforcement. f, = 25MPaand
V, =180kN.

SOLUTION

Shear strength of concrete equal to:

\/?b d——b d

The requwed nommal shear strength equal to:
Vi, =2V, /¢ =180/0.75= 240kN

Since there is no shear reinforcement:
V

c b
Vi, =0.24> 5= EbW.d
From the above equation:
by,.d =0.576m?
If d/b, ~2 the above equation becomes:
by (2by,) =0.576
by =0.537m =537mm, if by, is chosen equal to 550 mm, then d =1047 mm,

and h=1047+63=1110 mm. the final dimensions of the beam are:
B =500 mm and h =1150 mm.

EXAMPLE (6.2)

A rectangular beam with b =350 mm, d = 637 mm, f  =20MPa and f, =

400MPa. Determine the spacing of #10 vertical stirrups for the following
factored (ultimate) shear forces:
(@) Vu=60kN, (b) Vu=250kN, © Vu =400 kN, (d) Vu =700 kN.

SOLUTION

(@) Vu=60 kN
>V, /¢ =60/0.75=80kN

14



Ve = */é_o x 0.35x 0.637 x 1000 =166.2kN >V,, =80kN

Compare Vn with Vc/2
Vo /2=166.2/2=83.1kN >V,

Therefore the section doesn’t require shear reinforcement.

(b) Vu = 250 kN
Vp, 2V, /¢ =250/0.75=2333.3kN >V, =166.2kN

Therefore the section requires shear reinforcement.
Vg =333.3-166.2=167.1kN

MinVg = %bw.d = % % 0.35x0.637 x1000 = 74.3kN

-
MinVs _%bw.d :%x 0.35x 0.637 x 1000 = 62.3kN

ReqVs =167.1kN > MinV = 74.3kN

-
%bw.d = @0.35 % 0.637 x1000 = 332.4kN >V

Therefore the spacing of stirrups = d/2=637/2=319 mm or 600 mm

whichever is smaller.
S.Maxs=d/2=637/2=319mm

_Afyd 158x107°% x400x0.637
Vs 0.1671
Use #10 U vertical stirrups @ 225 mm c/c.

=0.241m = 241mm < max.s =319mm

S

(c) V. = 400 kN
Vp 2V, /¢ =400/0.75=533.3kN >V, =166.2kN
Vg =533.3-166.2 = 367.1kN

-
%bw.d = @0.35 x 0.637 x1000 = 332.4kN <Vg =367.1kN

Therefore the maximum spacing between stirrups less than d/2=319 mm.
compare Vs with the maximum limit of V,

15



MaxV, = g\/T b,.d = %x 20 0.35x 0.637 x1000 = 664.8kN >V,

Therefore maximum spacing = d/4=159 mm or 300 mm whichever is
smaller:
~.Maxs=d/2=637/2=319mm

_Afyd 158x107° x 400 0.637
Vs 0.3671

S =0.1097m

~110mm < Max.s =159mm
Use #10 U stirrups @ 100 mm c/c.
(d) Vu =700 kN
Vi 2V, /9=700/0.75=933.3kN
S5 [, 5
MaxV, = EJTC Dy = 120 x 0,35 0.637 x1000~B30.9KN <RV

Therefore a larger cross-section or higher compression strength of concrete
should be used.

EXAMPLE 6.3

A cantilever beam with a span of 2.4 m subjected to a uniformly distributed
live load of 10kN/m and a uniformly distributed dead load of 7kN/m, in
addition to the beam weight. Determine the zones that require shear
reinforcement. f, =20MPaand f, = 400MPa.

SOLUTION:

Add the beam weight to the DL;

Beam weight = 0.25%0.4x1x24 = 2.4 KN/m

w, =1.2(2.4+7)+1.6%10 = 27.28 KN/m
Vui=27.28x24=655kN, V.,=655/0.75=87.3kN
Vuw = 27.28(2.4-0.34) =56.2 KN , V.=56.2/0.75=74.9 kN

*/625_0 x 0.25x 0.34 x 1000 = 63.4kN <V q = 74.9kN

V. =

Therefore the beam require shear reinforcement at point (d).
V. /2=63.4/2=31.7kN

Figure (6.9) shows the V,and V, diagrams and the points where V, =V, /2
and V. and the zone that does not require shear reinforcement.
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873_3L7 , X1=0.871m = 871mm (from the free end to this point the

24
beam does not require shear reinforcement)
% = @ , X3=1.743m=1743mm Wu=27.28 kN/m
24 X3 L T 2
x2=x3-x1=1743-871=872mm ¥ 2.4m D
MinVg =1bW.d ~ 1 0.25%0.34x1000
3 3 2| <
= 28.3kN o ©
\F [(e] o]
) f Vu-Diagram
MinVg =1+-Ch,,.d =@xo.25x 0.34x1000
16 16 Vo=
=23.8kN =| S~634kN  Ve/i2=
V. + MinVg =63.4+28.3 ™| X 31.7kN
=91.7kN >Vpq = 74.9kN S
y , 871mm  871mm |
Vn-Diagram

Therefore the beam requires minimum shear reinforcement from the point
(x1) to the face of support. If #10 U stirrups is used, the spacing will be as

shown below:

s=3A,.fy /by =3x158x10"°® x 400/0.25=0.758m

16 A.fy 16 158x107% x 400

S = | =

J]TC by 20 0.25
Max.s=d/2=340/2=170mm
Use #10 U stirrups @ 150 mm c/c. the through which shear reinforcement
should be provided L, = 2400 - 871 = 1529 mm, number of stirrups
= 1529 /150 = 10.1,
Use 11 #10 U stirrups, 1 @ 75 mm + 10 @ 150 mm c/c.

=0.904m
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EXAMPLE 6.4

A simply supported with an effective span = 5.0 m (support width = 300
mm) is carrying a working DL = 70 kN/m (including beam weight) and a
working LL 80 = kKN/m. f, =25MPa, f, =400MPa, b= 300 mm, and d = 537

mm.
SOLUTION

Calculate the factored (ultimate) loads;
Wyg =1.2x70=84kN /m

W, =1.6x80=128kN /m

Total ultimate load equal to:
W, =84 +128=212kN /m

Calculate the ultimate shear force at the center of support, by considering the
DL and LL on the whole beam:
Vs =212x5/2=530kN,

Vps =530/0.75 = 706.7kN
Vyc =128x5/8=80kN , Vc =80/0.75=106.7kN

Connect these two points (center of support and mid span section) by a
straight line as shown in the figure below.

J25
6

V. =

x 0.3x 0,537 x1000=134.3kN >V,

Ve /2=67.1kN <V,

From the similar triangles, calculate the distance from the mid span section
to the point where v, =V, and equal to 115 mm,

706.7-106.7 134.3-106.7
2.5 X1

X1 =0.115m =115mm

through this distance V. /2 <V, <V, where the minimum shear

reinforcement should be provided.

From the similar triangles also, calculate the factored shear force at the
critical section (d from the face of support)

706.7-106.7 Vg —106.7 Vg =541.8kN

2.5 © 2.5-0.15-0.537

-
Vq =541.8—-134.3=407.5kN > %bw.d = 268.5kN
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So the maximum spacing between stirrups is less than d/2, then calculate the
maximum shear strength of the shear reinforcement:

y
Vgq =407.5kN < Zgbw.d =537kN
So the maximum spacing between stirrups is d/4 or 300 mm (whichever is

smaller)

-
Vgg =407.5kN < 2§bw.d =537kN

If #12 U stirrups is tried, the spacing equal to:

Aty 226 x107° x 345
Vs 0.4075

0.537=0.103m =103mm

Sd

The required shear strength of the shear reinforcement (V) decrease with the
distance from the face of support, and in such cases it is preferred to draw a
spacing curve (relationship between the spacing and distance along the
span). The relationship between (s) and (V;) is not linear but curvilinear, and
at least three points have to be determined.

The distance between point (e) and the critical section = 2350 — 537 - 115 =
1698 mm. The V diagram is a triangle whose base = 1698 mm and height =
407.5 KN. To draw a curve along the span divide tis distance into equal
distances, e.g. (four divisions), Table (6.2) shows the nominal shear strength
(Vy), shear strength of the shear reinforcement (Vs), and spacing of the
stirrups.

Table (6.2) Spacing of stirrups versus the distance along the span

Point d a b c e Beam
CL
Dist.(mm) 537 962 1386 1811 2235 2350
Vi, 541.8 439.0 338.0 236.1 134.3 106.7
Vs 407.6 305.7 203.8 101.9 0 | -
MinVg 53.7 53.7 53.7 53.7 53.7 | --------
S (mm) 103 137 206 412 o' T [R———
Max. s 134 134 269 269 269 269
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(a) Longitudinal section of the beam

300 mm 235m

|
A
pd
S pd
& =
I 0
>
>
I L=2500mm |
[ [
> (b) V,- Diagram
X
co
—
3 2
¥ 2
: S o <z
! K N~
! c > 8
| > —
| & &
i > >
ﬁlSmm
| d e |
130MM 4o537mm | 1813mm |
[ | |
| 1266mm | 1234mm |
| Max.s=d/4=160mm ! Max.s=d/2=269mm '

(c) V- Diagram
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Spacing of stirrups (mm)

500 [—
400 —
300 — Max. s :/A mm
200 —
Max. s =d/4 =134 mm //
100 —
I
537 962 1386 1811 2235
Distance along the span (mm)
(d) Spacing Curve
EXAMPLE 6.5

Check whether the one-way ribbed slab of Example (5.) need shear
reinforcement or not. The slab is simply supported on an effective span
of 4.0 m (c/c). f, =20MPa and f, =400MPa.

L

The ultimate load on the slab = |
|

w, =1.2(2+2.12) +1.6 x5=12.94kPa

The ultimate load on each rib = 12.94x0.6 = 7.76 kN/m
d =224 mm.
V,, =7.76(4/2-0.224) =13.78kN

V., ~13.78/0.75=18.37kN

The shear strength provided by concrete (V. ) increased 10% due to the
better load distribution in ribbed slabs.

1.1420
6

|
I
100 500 100

V., = x0.1x0.224 =18.37kN

c

No Min. shear reinforcement is required where v, >V, .
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CHAPTER EIGHT
STRENGTH IN COMPRESSION OF MEMBERS IN
COMPRESSION AND BENDING

8.INTRODUCTION

Column is usually a vertical reinforced concrete member used primarily to carry
axial compression loads, but can also resist moment, shear, or torsion. Compression
members with height less than or equal to three times its width called pedestals,
Figure (8.1a) with cross-section larger than the column and is usually used to
transmit loads from columns to the foundation.

There are other structural members can be considered as compression members also
as they resist compression loads and moments like some members in reinforced
concrete frames, compression members in trusses, arches, and shells.

In reinforced concrete members that carry compression loads, it is preferred that
concrete carries most of the load because of its low cost compared with steel. Use
of reinforcement is unavoidable in columns because of many reasons:

I. Most columns are subjected to moments in addition to the compression load
due to its continuity with other structural members,

1. Some columns are constructed inclined due to mistakes in the construction
process, and

lii. Use of steel with its high strength compared to concrete (=10 times in

compression and =~ 100 times in tension) will reduce the required cross-
section.
Columns are classified according to their heights/width ratio as:

I. Short columns with relatively small height / width ratio, and its strength is
controlled by the materials strength (f; and fy) and cross-sectional
dimensions, and

ii. Long (slender) columns with a relatively large height / width ratio, and its
strength is controlled by the materials strength (f; and fy), cross-sectional
dimensions, height, and boundary conditions.

Columns are classified also according to the type of transverse reinforcement

used to support the main vertical reinforcement as:

I. Tied columns with square, rectangular, or circular cross-section and the main
reinforcement is wrapped by the ties, Figure (6.1b), and

Ii. Spiral columns with square, circular, or polygonal cross-section with
transverse reinforcement as spiral, Figure (8.1c).
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There is other type of columns called composite column with steel sections as main
reinforcement and with or without longitudinal bars, Figure (8.1.d).

t Concrete Shell
{ .
t Q-6
Ties \ Spira Steel section

A y []
™
Vi
o
X
(qv]
=

\ 4

(a) (b) (c) (d) Conerete

Figure (8.1) Types of columns, (a) Pedestal, (b) tied column, (c)
spiral column, (d) composite column.

8.2 BEHAVIOUR OF AXIALLY LOADED SHORT COLUMNS

When a reinforced concrete column is subjected to an axial compression load, the
strain over the whole cross-section is constant, and the strains in concrete and steel
are equal, due to the perfect bond between the two materials. When the stress in
concrete is less than (f./2) both the concrete and steel behave elastically. Concrete
and steel will share the applied external load:

P=1f..A + fs. A (8.1)
Where f. =concrete compression stress, Ac = net concrete area = Ag - As;, Ag = gross
concrete area, Ag = total steel area, f; = compression stress in steel, using the
relationship fs = nf; and substituting it in the above equation:

P=Tfc(Ac +nAst) = fc. Ay (8.2)
The expression between brackets equal to the equivalent transformed area (Ay)

Equations (8.1 and 8.2) can be used to calculate the stresses in concrete and steel
when the concrete stress is less than (f/2), i.e., in the working or service conditions.
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Due to creep and shrinkage of concrete, the following changes may take place:

I. Stresses in concrete decreases and those in steel increase, and
1. Heavily reinforced columns subjected to long term loads and unloaded later,
tension stresses in concrete and compression stresses in steel may be created.

Therefore Equations (8.1 and 8.2) will not give the true stresses and the strength
design method is adopted for this reason.
When the external axial loads on a reinforced concrete column increased the steel
stress reaches the yield strength (fy) before the concrete reaches its strength (f;). In
this case the column will not reach its strength, because it will carry additional load
till the concrete reaches its strength in compression, Figure (8.2).

Pno=0.85fc’(Ag-Ast)+Ast.fy

r\j\oad-strain curve for the colump
\R

oad-strain curve for concrete

[

Axial Load

0.85f¢’ (Ac-

Load-strain curve for steel

Ast.fy
y

O 1 v 1 1 1

0 0.001 0.002 0.003 0.004 0.005

Strain

<

P

Figure (8.2) Variation of the strains in concrete and steel for an axially
loaded reinforced concrete column

Therefore the strength of an axially loaded column is the sum of the concrete
strength [0.85f; (Aq-Ast) and the steel strength (Asxf,):

Pro =0.85f¢(Ag — Ag) + Agt. fy 8.3)

this load is called yield strength of the column. Up to this point the behavior of both
tied and spirally reinforced columns is identical, Figure (8.3), at this point also the
concrete crushes and the main reinforcement buckles, Figure (8.4).



When a spirally reinforced column reaches the yield point, the concrete shell
outside the spiral crushes and separates from the column and this will lead to a
reduction in the column strength and the main reinforcement will not buckle, Figure
(8.4) due to the lateral support provided by the closely spaced spiral (50-75 mm).
Before the column reaches the final failure, the longitudinal bars continue to carry
compression stresses due to the behavior nature of steel, and this is accompanied by
longitudinal compression strains leading to expansion of the concrete core (inside
the spiral) creating outward radial stresses on the spiral and as a result the spiral
exert radial compression stresses on the concrete core and increasing its strength
more than that in Equation (8.3):

PﬂO 2085fC(Ag—A5t)+AStfy +kS'ASp'fyS (84)
1 COIupnc:iqule'd Heavy spiral
Spiral column loose
the shell ACl spiral
Light spiral
©
I
3 Failure of tied The shape depends on the
column loading type and these

shapes are estimates

Strain

Figure (8.3) Comparison of tied and spiral column behaviour

Where Ag, = volume of spiral / unit length of the column, ks = factor = 1.5-2.5 with
an average of 2.0, this means that the strength of spiral reinforcement at this stage is
twice that of the longitudinal reinforcement. The increase in strength depends on
the volume of the used spiral, Figure (8.3). From what is mentioned before, it looks
that the spiral column exhibits ductility before final failure.



(b}

Figure (8.4) Typical failure of reinforced concrete columns, (a) tied
column, (b) spiral column

8.3 Interaction of Bending Moment and Axial

Axially or concentrically loaded reinforced concrete columns are rarely found in
practice, since moments are present due to its continuity with other structural
members, the action of wind and seismic forces, or forces acting on brackets or
corbels. Even if the structural analysis reveals no moments on the columns,
unavoidable construction mistakes may place loads outside the column centroid
resulting in moments. Therefore, most reinforced concrete columns are subjected to
compression and bending moments and called eccentrically loaded columns. The
interaction of compression load and moment may be presented as shown in Figure



(8.5), either a compression load on the column centroid and moment, or a
compression load at a distance e = M / P from the column centroid.

The axial strength P, in Figure (8.6) represent the column strength to compression
load when it acts at the column centroid, i.e., the moment = zero, Equation (8.3).

P P
/k 'le=M/P ‘
4 M=P.e i

1 1

Figure (7.5) Equivalent eccentricity

When the moment is small, the strain distribution is nearly constant, and the neutral
axis lies outside the cross-section. When the moment increases, the neutral axis
depth and the column axial strength decreases, Figure (8.6). The curve representing
the relationship between the axial and bending strength of the column called
interaction diagram. All points inside this diagram, represent the loads and
moments that can be carried by the column, and those outside represent loads and
moments causing failure. Any radial straight line from the origin, represent a
constant ratio of moment to load (e) or a constant distance from the point of action
of the load to the column centroid.

The case of balanced failure (M, Pny) represents the load and moment at balanced
strain condition. At this stage, crushing of concrete in compression and yielding of
the tension steel occurs instantaneously. The balanced load (Pn,) act at a distance
(ep=Mnp/Prp) from the column centroid. In columns that are carrying compression
loads essentially, this case of failure and the compression failure can't be avoided as
in beams and slabs by limiting the reinforcement ratio to (p < py) and the case of
failure is controlled by the load position and not by the reinforcement ratio. To
compensate for compression failure, a small strength reduction factor is used (0.65-
0.75) more than that used in flexural members (beams and slabs).

When a column is subjected to load (P, >Pn,) and moment the compression strain
reaches (0.003) before the yielding of the tension steel, i.e., compression failure,
and in this case the neutral axis depth ( o> ¢ > cp) and the eccentricity (e, > e > 0).

When a column is subjected to load (P, < Pn,) and moment the tension steel will
reach yielding before the compression strain reaches (0.003) i.e., tension failure,
and in this case the neutral axis depth ( ¢, > ¢ > 0) and the eccentricity (o> e > ey).



The case when the compression stress resultant equal to the tension stress resultant

Is a state of pure bending, this point lies on the horizontal (M-axis) where (M,
Mo, Pn =0, and e = ), Figure (8.6).

Pn(max.)= 0.8Pno (tied column)

Load

| {Pn(max.)= 0.85Pno (spiral column)

|
S

- Pn>Pnb 0.003 °
‘.‘_'ITe< eb

c>
Es< &y

Tension failure zone

\]:_> £

I I I *
//////’////“\\ Moment

=¥¥ 0.003 *v~

f=0 (Cracked)

1 [~ " Cc<ch
e _f~
| - | gy \}— E€s>> &y
Axial tension < |

Figure (8.6) Typical interaction diagram of a reinforced concrete column

There is another point that lies on the vertical (load-axis) below the zero point and
represent the case of axial tensile strength (tensile strength of concrete = 0) and
equal to:



IDno*zAstxfy (8.5)

The interaction diagram represent clearly the behaviour of a reinforced concrete
column, and is used for the analysis and design of of reinforced concrete column.
To draw the interaction diagram, a number of points have to be determined by
selecting a suitable values of the neutral axis depth and assuming that the strain in
compression = 0.003. Usually the interaction diagrams are drawn dimensionless so
that it can be used for any dimensions, shape, and reinforcement ratios.

8.3.1 Nominal axial Load Capacity P,, and ACI code Maximum Axial Load
Capacity Pnmax,)

As mentioned previously, the case of axial compression is rarely found in practice,
and the point is (Pyo) is hypothetical and used to construct the interaction diagram.
Equation (8.3) represents the axial strength for the tied and spiral columns. The
strength reduction factor that correspond to this state is =0.65 for the tied columns,
and 0.75 for spiral columns. For the case of axial tension, the strength reduction
factor = 0.9.

Since the case of axial compression is rarely found in practice, a minimum value of
eccentricity should be used. As a result of this eccentricity, the strength of the
column will be reduced as recommended by the ACI:

#Pn =0.8¢0Po (8.6a)
¢Pn = 0.85¢Py (8.6b)

7.3.2 Balanced Strain Condition for Rectangular Sections
Thee balanced strain condition is the point that separates the compression and
tension controlled zones, Figure (8.6). This occurs when the strain at the
compression face = 0.003 and the strain in the tension steel = yield strain (gy =
fy/Es), Figure (8.7):
600

Cp, =

600+ f,
a, = plc,
The resultant of the compression stresses on concrete equal to:
C,=0.85f_a,b (8.7)
The resultant of the compression stresses on the compression steel equal to:

C, = Af (8.8)



The effective stress in the compression steel when the compression steel reaches
yielding equal to:

fg = fy —0.85f
And if it does not reach yielding, the effective stress equal to:
fo = fs —0.85f, (8.9)
y
h/2 T h/2
’ L ?
.
| |
gsl d-cb ! cb [Pnb
! N eb !
EA A A A A'r
- 38

Figure (8.7) Balanced strain condition in a rectangular column

Where fs equal to:

¢ ;d 600 (8.10)

The resultant of stresses in the tension steel equal to:
T=A.f, (8.11)

Using the equation of equilibrium of the loads in the vertical direction, the nominal
balanced strength (P,) of the column can be calculated:

C,+C,-T—-P, =0

fg =

P,=C, +C,-T (8.12)
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The third equation of equilibrium (XM=0) about the centroidal axis can be used to
determine the location of (Pyp):
P,& =C,(h/2-a/2)+C,(h/2—d)+T(h/2-d,) (8.13)

EXAMPLE 87.1
A rectangular column with b =300 mm, h= 500 mm, reinforced with six # 20 bars
(three on each face) 60 mm from the each face. f; =25MPaand f, = 400MPa .

Determine the points of change on the interaction diagram, point in compression
and point in the tension failure zones. Consider the load acting on the major axis (x-
axis).
SOLUTION

1- Axial strength of the column Py,

Pro =0.85f¢.hb + Ag.(fy —0.85x ;)

Pro =0.85x25%0.5x 0.3+ 6 x 314 x 107° (400 —0.85x 25) =3.901MN
Pro =3.901IMN
At this point, e =0, M, = 0, ¢ = oo, compression is dominant, i.e., ¢, =0.002, and ¢ =

0.65.
¢P,, =0.65x3.901= 2.536MN, gM, =0

2- Pure bending (P, =0,M, =M )
The section is considered as a double reinforced section subjected to pure bending.
C,+C, =T

0.85f,. fLch+ A (=9

C

)600 - 0.85f, = Aq.f,

c-0.06
c

0.85x 25x 0.85(C)0.3+ 3x 314x1075( 600 0.85x 25)

—3x314x107% x 400
c? +0.031c — 0.00625=0
c=65 mm, a=55 mm

6560 600 = 46.15MPa

fg =

f, =46.2—0.85x 25M = 24.9MPa
My =0.85f..ab(0.44 — 0.055/2) = 0.1446MN .m =144.6kN

Mo = Ao (d —d') =3x314x107° x 24.9(0.44 — 0.06)
M = 0.00891MN.m = 8.9kN.m

11



M po =144.6+8.9 =153 5kN.m

& = H0.003 = %0.003 =0.017 >0.005,¢=0.9
C
M o = 0.9x153.5kN.m =138.2kN.m
P =0
3- Balanced strain condition, c=c,, P, =P,, M, =M ,.
600 y+
Chp=——0=0.6d =264mm !
600 + fy 250 mm I 250 mm
ap = 0.85x 264 = 224 ,
. ®c ! °
Ncp =0.85f..a,.0=0.85x25%x0.224x 0.3 | E i E:Pnh)
— _._+._ﬁ _________ JI __________ 6_._O_> X
=1.428MN | i |
. 264-60 A Se
fg= 600 =463.6MPa > f, ' :
N = Ag.fy =3x314x107° x 400 =0.377MN L
SFy =0 s—
©d-cb=176mm! _
Ner + Nea = N; — Pop =0 e i
Pap =1.428+0.357 — 0.377 =1.408MN - , Prb
& =&y =0.002 [
¢=0.65 5 & o
#Pnp = 0.65x1.408 = 0.915MN T § i
Taking the moment of the three internal forces < &8
and the external load about the column zZ
centroid to find (ey): | Figure (8.8) Balanced strain condition
.=
IDnb
o 1.428(0.25—-0.224/2) + 0.357(0.25 - 0.06) + 0.377(0.25 — 0.06)
b =

1.408
ep =0.239m =239mm

M nb = Pnb.eb =1.408x0.239=0.3365MN.m
M pp =0.65x336.5=218.7kN.m

12



4- Point in the compression controlled region, for this region, ¢ > ¢y, try ¢ = 400
mm.

a=0.85x400=340mm
C, =0.85x25x0.34x0.3=2.17MN

. 400-60
* 400

- f. =400-0.85x 25 = 378.75MPa
C,=A.f =3x314x10"°x378.75 = 0.357 MN

o — o = 97C0 003 4404005 02 60003 < 0.002
st 400

C
. $=0.65
fo = Eg.e5 = 200000 x 0.0003 = 60MPa

Ni = Ag.fs =3x314x107% x 60 =0.057MN
P, =Ny + Ngp — Ny =2.17 + 0.357 — 0.057 = 2.47MN
, _ 1:428(0.25-0.34/2) + 0.357(0.25 - 0.06) + 0.057(0.25 - 0.06)
2.47
M, =P, .e=247x0.102 = 0.2519MN.m
#P, =0.65x 2.47 =1.606MN =1606kN

MM, =0.65x 251.9=163.7kKN.m

5- Point in the compression controlled region , in this region ¢ < ¢y, try ¢ =120
mm:
a=0.85x120=102mm
C,=0.85f_.ab =0.85x25x0.102 x 0.3 = 0.65MN

+ 120-60
fs ==

f 600 = 510MPa

=0.102m =102mm

600 =300MPa > f,

f'=f —085f =300-0.85x25=278.75MPa

C,=A.f =3x314x10° % 278.75 = 0.263MN

T = As.fy =3x314 x10® x 400 = 0.377MN

SF, =0

C,+C,-T-P, =0

P, =0.65+0.263—0.377 = 0.536MN

. _ 0.65(0.25-0.102/2) + 0.263(0.25 - 0.06) + 0.377(0.25 - 0.06)
0.536

=0.468m

e =468mm
Mp =P,.e=0.536x0.468 =0.251IMN.m

13



~.$=09

£s =&t = 9=C¢0.003-

C

C

440-120

#Pn =0.9x0.536 =0.4824MN = 482.4kN

MM, =0.9%x 251=225.9kN.m
6- The case of axial tension, in this case the steel will resist all the external load:

0.003=0.008>0.005

Pro = Agt. fy =6x314x107° x 400 = 0.754MN = 754kN
The neutral axis depth c=w and e =0.

It is possible to take more points to draw the interaction diagram more

accurately as shown in the Table below.

Table (8.1) Coordinates for the interaction diagram of Example (8.1)

No. C a e P, M ¢ Pn | M
mm mm mm KN | KN.m KN | KN.m
1 00 h 0 3901 0 0.65 | 2536 0
2 600 510 7 3738 26 0.65 | 2430 17
3 500 425 51 3113 | 158 | 0.65 | 2023 | 102
4 400 340 102 | 2470 | 251.9 | 0.65 |1605.5 | 163.7
5 334 284 150 | 1987 | 298.1 | 0.65 [1291.6| 193.7
6 264 224 239 | 1408 | 336.5 | 0.65 | 915.2 | 218.7
7 190 162 311 | 1010 | 314 | 0.808 | 816 | 253.7
8 120 102 468 536 251 0.9 | 482.4 | 225.9
9 65 55 00 0 153.7 | 0.9 0 138.4
10 0 -754 0 09 | 678.6 0
11 50 425 | -b12 | -219 | 1121 | 0.9 197.1 | 100.9

8.3.3. Distributed Reinforcement
When the moment acting on the column is relatively large, all or most of the
reinforcement should be placed near the outer faces as in the previous example.
When the moment is relatively small (small or zero eccentricity), the strain
distribution is almost constant or nearly so and the reinforcement should be
distributed uniformly across the outer edges of the cross-section. The strain in the
intermediate bars is calculated using the strain compatibility. The method of
analysis is similar to that of example (8.1).
EXAMPLE 8.2

In the previous example if two bars # 20 are added at the middle of the long sides,
Figure (8.9), calculate the balanced eccentricity.

14



SOLUTION

C,=0.85f a,b=0.85x25x0.224 x 0.3 =1.428MN

4
. 264-60 250mm | 250mm
fs2 = = —~600=463.6MPa > f, |
264 : .
f, = f,—0.85f, = 400—0.85x 25 = 378.75MPa . * o
Do ! 8#20/mm | Pnb
C, = A.f. =3x314x10"° x378.75 = 0.357MN R B S 1yl X
. 264-250 ' ’ i
fog = = =>-600=3L8MPa > f, ¢ ¢ s
264 ]
f,=f,—-085f =31.8-0.85x25 -
~10.55MPa /§
C, = A,.f, = 2x314x107° x10.55 3

g-cb=176mm  cp=ppamm |

=0.0066MN = 6.6kN | T b3 I
- i eb=237 =
T= As.fy =3x314x107° x 400 ___mﬂmpnb 1.414

—0377MN A A A A T
]

~ S

g o

C,+C,+C,-T-P,=0
Pyp =1.428 + 0.357 + 0.0066 — 0.377

=1.414MN 1L !
#Prnp =0.65x1414 =919kN pa

1.428
0.357

N
Nc1
Nc2

Figure (8.9) Balanced strain condition

of Example (8.2)
o 1:428(0.25-0.224/2) +0.357(0.25-0.06) +0.377(0.25-0.06)

° 1.414
ep =0.237m=237mm

M pp = Prp€p =1.414x0.237 = 0.335MN.m

M p =0.65%x335=217kN.m

Figure (8.10) shows the interaction diagrams for the columns of Examples (8.1 and
8.2), the difference is very small near the region of the balanced strain condition,
while in the tension controlled zone, the column of Example (8.2) has larger
bending strength than the column of Example (8.1), the Figure shows also the
interaction diagram of the column of Example (8.2) rotated 90°, i.e., b=500 mm,
and h =300 mm. It can be noticed that the bending strength is reduced compared to
that of Example (8.2). The Figure shows also the interaction diagram multiplied by
the strength reduction factor ().

15



_._Load (kN)

- 3000 {Pn(Max.) = O.85Pno

Pn(Max.) :

(I) w0 XN N H A

Moment (kN.m)

Figure (8.10) Interaction diagrams for columns of Examples (8.1 and 8.2)



8.4 Lateral Reinforcement
The transverse reinforcement in columns is either a ties with the same shape as the
column spaced vertically, or continuous spiral. The transverse reinforcement has
three functions:

I. Fixing the main bars and keeping it in position inside the forms,

Ii. Prevent or retard the buckling of the vertical bars, and

Iii. Act as shear reinforcement.

iv. The spiral reinforcement provides the column with additional strength that is

lost by the separation of the concrete shell.

8.4.1Ties
The ACI Code recommends the use of #10 ties when the diameter of the main
reinforcement < 32 mm, and #12 when the diameter of the main reinforcement > 35
mm or when the bars are arranged in bundles. It is possible to use deformed wires
or welded wire fabric as a transverse reinforcement with equivalent area as the ties.
The vertical spacing between stirrups in the vertical direction should not exceed:

i. 16d,

1. 48d;, and

iii. Least dimension (b) of the column.

xJ

>150 mm — <150 mm

>150 mm

<150 mm

Figure (8.11) Arrangement of ties
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8.4.2 Spiral Reinforcement

The spiral reinforcement make the column retain its strength is spite of the large
deformation before failure, i.e., the failure is ductile. The volume of the spiral
reinforcement should be large enough to substitute the column the strength lost by
separation of the concrete shell (Ag-Acn). Using the third term of Equation (8.4) and
assuming ks =2.0 as an average, the strength contributed by the spiral reinforcement
becomes:

Phn=2.0fy.Asp (8.14)

Where fy: = yield strength of the spiral <690 MPa, A, = area of the spiral. If ps is
assumed equal to volume o spiral in one turn to the volume of concrete core (out to
out of spiral) or ps = (Asp/Acn), Equation (8.14) becomes:

Pn=2.0x pg.Ach.fy (8.15)
Where A, = area of the concrete core (out to out of spiral). When the concrete shell
separated, the column will lose strength equal to:

P =0.85f¢ (Ag — Ach) (8.16)
equating Equations (7.14 1nd 7.15), the spiral reinforcement ratio becomes:
Pn =2.0% pg.Ac. Ty =0.85T¢ (Ag — Acp)

fe A
ps =0425_S (.9 1) (8.17)
yt Ach

To make the spiral strength more than the concrete shell, use 04.5 instead of 0.45 in
the above equation:

fe Ag
ps =045——(—-1) (8.18)
fyt Ach
Using the definition ps = (Asp/Ach), it is possible to use Equation (8.18) to design a
spiral:
_ ﬁ _ Volume of spiral in one turn

- A, Volume of concrete core out to out of spiral in a height s

Ps

Substituting the volumes of the spiral and the concrete core, the above Equation can
be written as follow:

e = agp-7(D¢ —dgp) _ 4agy (De —dgp)
> (DZ14)s D2

(8.19)
18



Where D, = core diameter (out to out of spiral), as, = cross-sectional area of the
spiral, ds, = spiral diameter > 10 mm, S =spacing c/c in the vertical direction. The
clear distance between the spiral in the vertical direction should not be less than 25
mm, not more than 75 mm, or maximum coarse aggregate size.

Ag=JT (h)] 4

< > Figure (8.12) Arrangement of spiral
~_ —— and longitudinal bars in reinforced
\\‘////
| | ——F concrete columns
_________ BN e
a1 | | S
_______ (- v
—— ’—T___i
s I i
v | 41
a1 1 ||
P =
EXAMPLE 8.3

A reinforced concrete circular column with D = 500 mm, D¢ = 420 mm, f. =30
MPa, and f, = 400 MPa. Design the necessary spiral.

SOLUTION
A, = 7(0.5)? /4 =0.1963m’
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A =(0.42)*/4=0.1385m"
o 20.452(0.1963

400 "0.1385
If a 10 mm diameter spiral is used (as = 79 mm?), using Equation (8.19) to calculate

S:

~1)=0.014

4x79x1078(0.42-0.01)
(0.42)% s

s =0.0524m =52.4mm

Use s = 50 mm, the clear distance between spiral in the vertical direction =50 - ds =
50 — 10 = 40 mm, within the limits mentioned before, > 25 mm, <75 mm, and >
max. coarse aggregate size.

0.014=

8.5 Limits on Reinforcement Ratio

The ACI Code limited the gross reinforcement ratio 0.01 < py< 0.08, where pg=
(Ast/Ag). The reasons for limiting the minimum reinforcement ratio are:

I. To prevent sudden or brittle failure,

Ii. Providing minimum bending strength for the column, and

1. Reducing the influence of creep and shrinkage of concrete.

If the area of the column is more than required for strength, the reinforcement
ration should not be less than 0.005.
The maximum limit of the reinforcement ratio is to satisfy the clear spacing
requirements of bars:

I. >1.5dy,

Ii. >40 mm, and

Ii. (4/3) maximum coarse aggregate size.

8.6 Analysis of Sections in Compression Controlled Region

When the nominal strength P, of a column exceeds the nominal balanced strength
Pnb, € < ep, or when ¢ > ¢, compression will dominant, i.e., the behavior of the
member is close to that of a column than that of a beam. The strain in the tension
steel [which may be compression if () is very small] is less than the yield strain.
The interaction diagrams can be used for analysis and design. Whitney's method
can be used also.

8.6.1 Whitney Formula for Compression Failure Case
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The method is suitable for symmetrically reinforced columns (As = As), in deriving
this equation, the compression steel is assumed to reach yielding and a =ay, .

B

Pr=g hbeh f + eAs y (8.20)

SR +1.18 -+0.5

d d-d
If yh=d-d, p, =2A,/A,, A, =bh, and &=d/hthe above Equation can be
rewritten as follow:
— fcl pg'fy

M s O

&% °h y'h (8.21)

This equation is more suitable for design.

EXAMPLE 7.4 ‘ h=s00mm
In Example (7.1) if the load is placed e dmaaimm ——p
150 mm to the right of the y-axis, c ° ! o ®
find the design strength. £ ! "
o -1 @ ------ R 4 +)1@ -~
Since e = 150 mm < e, = 239 mm, al e i o
it is compression failure and !
Equation (7.20) can be used. < h=500 mm N
_ 0.3x0.5x25 942><10‘6 x 400 l«—— d=440mm ——»l
"~ 3x05x015 | 0.15 +05 e ° i
(0.44)2 +1.18 0.44-0.06 £ .
o - @ - o [
=2.022MN > P,, =1.408MN =)
This value is less than the exact value 2 ¢
P, =1.989 MN (1.63% difference).
¢ =0.65 |
#P. =0.65x2.022 =1.314MN £.20.000952 |
MM =0.15x1.314 = 0.197MN ~ l/.
| |<—>|<—c 334 mm —ﬁ
106 mm Pn=1.989MN
Figure (8.13) Analysis of te =150 m
compression controlled g
sections LT
21 Ntzo‘.'179|v||\| Ne2=0.357MN

Nc1=1.811MN



8.6.2 Analysis of Sections in Tension Controlled region

When the nominal strength P, of a column is less than the nominal balanced
strength Py, € > ey, or when ¢ < ¢, tension will dominant, i.e., the behavior of the
member is close to that of a beam than that of a column. The strain in the tension
steel is more than the yield strain when the concrete reaches a compression strain
=0.003. The interaction diagrams can be used for analysis and design. Whitney's
method can be used also.

8.7.2 Approximate Formula for Tension Failure Cases

For symmetrically reinforced sections ((As = As), in deriving this equation, the
compression steel is assumed to reach yielding:

P, =O.85fclb.d{—p+l—e'/d #-e'/d)2 +2p|m-1)1-d /d)+e/d] }

(8.22)
Where p = A /(bd), p=A /(bd), m=f (0.85f;),and e'=e+(d—d)/2.
EXAMPLE 85 _ h=500mmm
In Example (8.1) if the load is placed < | =240 >
350 mm to the right of the y-axis, x : — mm >
find the design strength. £ * ! ¢ P
- _._ ............. i m e ..._ -
SOLUTION ) 3 gb
Since e = 350 mm < e, = 239 mm, @ o i e = 350mm
it is tension failure and = i .
Equation (7.22) can be used. g &s' =0.00196
- 440 - 60 ! S
e =350+ —2 =540mm 83:0.0051\‘ 7/( g
: 942 ’
p:p :—:000714 ' & »
300x 440 ¢=163 mm
i 2.0=P.85x 20 0.!
m= ﬂ =18.82 3 e = 350mm R
0.85x 25 * >
l I @JJ:O.SB?MN
N:=0.377MN
N¢1=0.883MN
22 Figure (8.14) Analysis of tension

controlled sections



—0.00714+1-540/440
P, =0.85x25x0.3x0.44

{+ \/(1— 540/ 440)2 +2x0.00714](18.82 —1)(1 - 60/ 440 + 540/ 440] }=0.85IMN
= 851kN

M =0.851x0.35=0.298MN.m = 298kN.m

This value is 1% more than the exact value.

8.7.3 Using the Interaction Diagrams or the Analysis

In the analysis, the cross-sectional dimensions, and the area of steel are known or
given, and the required unknowns are either:
I. The design strength of the column ¢P, if e is given, or

ii. The load position if P, is given.

EXAMPLE 8.6
Solve Example (8.4) using the interaction diagram.
y=(d—-d")/h=(440-60)/500=0.76

e/ h=150/500=0.3
p, = 6x314 /(300 x500) = 0.01256

Enter the diagram for » =0.7 with e/h=0.3 and p, = 0.01256 , and read K, =0.52
Enter the diagram for » =0.8 with e/h=0.3 and p, =0.01256 , and read K, =0.54
Therefore K,=0.532

K = fF’nAg P, =K, f.A, =0.532x25x0.15=1.995MN

c

EXAMPLE 8.7

Solve Example (8.5) using the interaction diagram.
y=(d-d")/h=(440-60)/500=0.76

e/h=350/500=0.7

Enter the diagram for  =0.7 with e/h=0.7 and p, =0.01256 , and read K, =0.20

Enter the diagram for » =0.8 with e/h=0.7 and p, =0.01256 , and read K, =0.24

Therefore K,,=0.224

K, = :“ P, =K, f,A, =0.224x25x0.15 = 0.84MN =850kN, gP, = 0.65x 840 = 546kN

n

c' 9
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EXAMPLE 8.8

If a load of P, = 650 kN is applied on the column of example (8.1), what is the
eccentricity.

SOLUTION

y=(d—d')/h = (440—60)/500 = 0.76
P 0.65

u

A T 065x25x0.15
Enter the diagram for » =0.7 with K, =0.267and p, = 0.01256 , and read e/h= 0.6
Enter the diagram for » =0.8 with K, =0.267 and p, = 0.01256 , and read e/h= 0.65
e/h =0.63, e = 0.63x500 =315 mm.

=0.267

8.7 Design of Rectangular Reinforced Concrete Columns

The strength design for columns can divided into three categories, Figure (8.15):

I. Sections subjected to axial compression, or axial compression and small
bending moments, (e < enin), (0.8Pno < Pn < Pn0) in this case the design is
according to Equations (8.6a and 8.6b),

1. Compression controlled region (emin <€ <eéyp ), (Pnn <P, <0.8P,) and the
section in this case is less than that required for the balanced strain condition,
and

iii. Tension controlled region (e, < e <), (0 < P, < Pyp) and the section in this
case is more than that required for the balanced strain condition.

The following equations can be used as a first estimate of the required area of the
cross-section for tied and spiral columns respectively:

P
A= B 8.23
g O.4(fC' +pf,) ( )
P, (8.24)

A =——t

°0.5(f, +pf,)
If the section is subjected to large bending moment, a higher cross-section is
required.
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Max. Axial Compression permitted by (ACI)
Pn(max.) = 0.8Pno (tied)
Pn(max.) = 0.85Pno (spiral)

First Region

Min. e <

Pn
Area < balanced area

cond region (compression controlled)
>cb Mie<e<eb Pn>Pnb

<
5
o
—
e
C
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Figure (8.15) Cases for Design of Reinforced Concrete Columns

8.7.1 Design for the First Region

EXAMPLE 8.9
A reinforced concrete tied column is subjected to P4 = 1200 kN and P; =1400 kN.
Choose a suitable dimension for the column (square) f; =30MPa, f, =400MPa, and

p, ~0.03
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SOLUTION

P, =1.2x1200+1.6 x1400 = 3680kN

i 3.68 =0.2190476

A= 0a f.+p,f,) 04(30+0.03x400)
b=h=_[A, =0.468m = 468mm, try b=h=450mm,
P, >3680/0.65=5661.5kN

Py = 0.8P, = 0.8[0.85F (A, — A,)+A,.f,]=

n(max.)

0.8[0.85F, (A, — p-A)+ py A, f,1=0.8A [0.85F (1 p,) + p,.,]

5.6615 = 0.8(0.45)%[0.85x 30(L— py ) + pg x 400]
p, =0.0252 ~ 0.03

A, =0.0252(450)? = 5111 mm?
Since the column is axially loaded, the strain and compression stress is constant
across the cross-section, and it is preferred to distribute the bars along the four
faces. Use 12 # 25 bars (four bars on each face) = 5892 mm?, Figure (8.16). Ties
diameter = #10 mm (Bar dia. < 32mm), with spacing's:

I. 16 d, =16x25 =400 mm,

1. 48 d;=48%10 = 480 mm, or

Ii. b =450 mm.
Therefore use 3 # 10 mm @ 400 mm c/c, Figure (8.16).
Clear spacing between bars = (450 —2 x40 —2x 30 —3x 25)/3=78mm

This value is:
I. >40 mm,
ii. >1.5d,=1.5%x25=37.5mm, or
Ii. (4/3) Max. coarse aggregate size, (4/3) 20 =27 mm.

b =450 mm

i’ 7 29
e [N % /}f
E N 7
3 2 ® 29|mn¥
X5
I
=

® 10 @ 400 mm c /c
Figure (8.16) Arrangement of steel for Example (7.9)
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8.8.2 Design for Region two (Compression Controlled)

EXAMPLE (8.10)
A reinforced concrete square column is subjected to P4 = 1250 kN, P, = 1000 kN,
DLM =150 kN.m, LLm =100 kN.m, f  =30MPa, f =400MPa, choose a suitable

dimensions and reinforcement to make p, ~0.025.

SOLUTION

P, =1.2x1250+1.6x1000 = 3100kN

M, =1.2x150+1.6 x100 = 340kN.m
e=M, /R, =340/3100=0.11m =110mm
P 3.10

A = " u =

°04(f, +p,f,) 0.4(30+0.025x 400)
b=h:m:O.MOm:MOmm
Try b=h=450 mm, since e = 110 mm < (e, ~ h/225 mm) it is a compression failure
case.
P, >P,/¢=3100/0.65=4769.2kN

M, >M,/¢=340/0.65=523.1kN.m
Equation (7.20) can be used to find the necessary area of steel:

=0.19375

' L f
P = 3 hb(.ah.fc i eAs y
——+1.18 -+0.5
d d-d
0.45% x 30 A, x 400
= + =4.769
3><O.45><(3.11+1.18 0.11 Yy
(0.387) 0.387-0.063
A, = 4137 mm?

A, =2x4137 =8274mm°
pq = 8274 /(450 x 450) = 0.0409 > 0.025

Try b=h=475 mm, since e = 110 mm < (e, ~ h/237.5 mm) it is still a compression
failure case.

0.475 % 30 A x 400
= 3x0.475x0.11 o =4.769
+118 O Lo
(0.412)2 0.412—0.063
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A, =3079mm?
A, =2x3079 = 6158mm’
p, = 6158 /(475 x 475) = 0.0273 ~ 0.025

Use 10#28=6160 mm?, use five bars on each face, Figure (8.17),
Clear spacing between bars = (475—2x40—-2x30—4x 28)/4 =56mm, this is within the

required limits of clear spacing:
I. >40 mm,
. >1.5d,=1.5%x25=37.5mm, or
Ii. (4/3) Max. coarse aggregate size, (4/3) 20 =27 mm.
Ties diameter = #10 mm (Bar dia. < 32mm), with spacing's:
I. 16 d,=16x28 = 448 mm,
Ii. 48 d; =48%x10 =480 mm, or

li. b =475 mm.
Therefore use 3 # 10 mm @ 400 mm c/c, Figure (8.17).

b=475mm

= nw —

gl [\ <

10 10 d 28 mm’

5

1

T

d IO@AIIOOmmc/c
Figure (8.17) Arrangement of bars for Example (8.10)

8.8.2 Design for Region Three (Tension Controlled)

In this case there is a change of behavior from a column failing in compression to a
beam failing in tension, and therefore an increase of the strength reduction factor
from 0.65 (when & =0.002) for tied columns and 0.75 for spiral columns to 0.9
(when & =0.005).

EXAMPLE (8.11)
A reinforced concrete rectangular column is subjected to P4 = 500 kN, P, = 400 kN,
DLM =200 kN.m, LLm =150 kN.m, f  =25MPa, f =400MPa, choose a suitable

dimensions and reinforcement to make p, ~0.03.
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SOLUTION

P, =1.2x500+1.6 x 400 =1240kN

M, =1.2x200+1.6 x150 = 480kN.m

e=M, /PR, =480/1240 = 0.387m = 378mm

A - P, _ 1.24
°04(f, +p,f,) 0.4(25+0.03x400)

h =1.25b,

1.25b? =0.083783, b = 259 mm, h = 324 mm.

Assume b =400 mm , h =500 mm.
Since e =378 mm > (e, ~ h/250 mm) it is a tension failure case. Try a strength

reduction factor ¢ =0.7,

=0.083783m*

Pn >1240/0.7 =1771kN

M, >480/0.7 = 686kN.m

Since it is tension failure, the tension steel will reach yielding, if the compression
assumed to reach yielding also, the tensile force T will approximately equal to C,
and in this case P, = C;

P, =1771=0.85f_.ab=0.85x25xax0.4

a = 208 mm, the couple created by (T and C,) and (P, and C,) will equalize each
other and the area of the tension steel can be found:

Ple—h/2+a/2)]=A.f (d-d)
1.771[0.378-0.25+0.208/2] = A_ x 400(0..437 —0.063)

As = 2746 mm?, 4#32 on each face = 3216 mm?. py=0.0322. To check the strength
use Equation (8.22)

p =p=A/(bd)=3216/(400x 434) = 0.0185,e =378+ (434 —66)/2 =562mm
e /d=562/434=1.295,d /d = 66/434 =0.152,m = 400/(0.85x 25) =18.82

P, =o.85fc'b.d{—p+1—e'/d #y-¢ 1d)2 + 2p|m-1)1-d 1d)+e'/d] }

P =0.85x 25x 0.4 o.434§ 0.0185 +1-1.295 ++/(1-1.295)% + 2x 0.0185[(18.82 —1)(L— 0.152) +1.295] |
P, =1.917MN =1917kN

If the equilibrium method is used, ¢ =275 mm , P,=1.919MN, ¢ = 0.00173, and ¢ =
0.65, P, =1.247 MN > 1.24MN
Clear spacing between bars = (400—2x40-2x30-3x32)/3=55mm (O.K.)
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When the bending moment is high, it is preferred to use rectangular section, with its
width parallel to the axis of rotation.

8.10 Circular Spirally Reinforced Columns
abl sl ol sy Blae e sl ¢a i 5 ganll L O oS G SV dsale Jania 4 yilal) adalial)
Cm Sl A 3 50 () oS5 Lavie L Jani L3l LSl jlanadl G h 5 ¢SUal 5 Aalad) ) (immy Jie
0.75 = 4asl&all (mdas Jale (558 cunall 3¢l 48 ghaall 33ae Y1 (o ST Al 400a ek il
I3 5 43 38 a0 53k 5 vie iy saee Y1 o e sl Sl cyy Gl OS5 48 shaall 52ee 30 0,65 ke
Al & sl e iy BV & slas () S0
acaiall (i 5 (5 shaall 3 sanll (e ST (G 5S5 AL £ 38 500 (55 Ladie 5l g ) small Jaall 2 ganl) daglia
@Ld\ dalia s
G shaall 3 gandl L Laa SIS 5ol Bary L5 Sla pelusall 3 gand) 8 el g Al ) () iy 385 Lo
AL 235000 (S5 Lavie dals

LS baall oy 853 s sall Jalail) cilaladia) Aileial) ¢Sy Ay yilall 3aae V) apanail of Jadail
(8 Al Al Jlads) ol G lie ) e eJalaill (5 gl) ()51 65 ¥ alae 5 VL&) (380 53 Jlanis) (S
Lyl (5 sy 5 s Taleuzad¥) dilaie 8 Ailu jall A alga¥) Jaxa (015 (0.003) b (5 sbosy LaleiasY!
o Aakaill o gl ) gaall day g Aalusall Jio 5 30l daked al 53 4 ra ollaty olld vie (0.85 )
(229) J&) c'éj\.ﬂ\ )SJA

O8I eJaile Jalaanty) U}S.a Laizd Whitney L&l Al dw @l c¥alaall (e Jleainl Sy LS
ol LS Dpant) Lalea¥) 4 slia

p Ag-fc LAty
Johe 118 R
(0.8h +0.67d,) ds (8.29)

L i 85300 L = g (e o)) plaall Gl =h SN adaial) dabas = Ay O S
Alasiiall Glaadll ki (Slall Sl jall elarll) 2 — (4 e f) adaial) Hhad = Gluzadll S 4
e glia N adaiall Jgaa g 2ic ¢ il A Jeaws LVl sclud o i) daleall o2a (3lELE xic
B pralail) G Gl rliill o guzadlll Ao gl () oS5 Laie Ay 55 Lol Jaed Aalaall () LS
b LeS Apans¥) JalaaaiV) Ao glie ol (S il 28 () 55 Laie Ll

: 0.85e mds 0.85e
P, =0.85f 'hz\/ ~0.38 _ ~0.38 8.30
=085 fo 2L~ > ~038)7 + LU= - (=2 -0.38)] (830)
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Curve A arm to centroid
of the circle

Curve B Area

Values of A and B

x/h

[N

h ? N Properties of the shaded segment
e X X=A.r, Area = B.h?
y

8l (s dakad (sl i (8.22) Jsll
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D, =500 — 2 x 40 =420mm
Ag = 0.52 =0.25m?

Ac = (0.42)% /14 =0.1385m"
20 , 0.25
>0.45-2
Ps 276 0.1385

:s lad (19.9) Asladll Jexinds 5 (79MM? = ag) 10mm =dg 05 lal) ki (= s )
4x79x107°(0.42 - 0.01)

(0.42)% s

s =0.028m = 28.0mm
34 5 (18 MM= 10-28) (58 (53 sanl) sla¥ (8 (5 S1a) (s dudloal) Aibisall (Y AL Lol o
;0o (12 mm) Lk s (25 mm) o< B8

~1)=0.0263

0.0263=

4x113x107°(0.42 - 0.012)
(0.42)% s

s =0.04m =40mm
5582l 3 5anl) (panm iy a1 138 5 28 MM = (g2 send) olai¥1 3 (5 Sl (s Aleall Adlsall () 55 5
Ll
Ao ) dsan¥) A ladl)

0.0263=

P, >1.5/0.75=2.0MN

dg =500-2x40-2x12—-25=371mm

Osilalaall Jarind SN cad of Bl oo Ja Jadll sy 5iil) (S M daslan 2 () ) A O Ly
bl dalise (o ST Lagyl daing 5 281 5 Jalzazai™

)0 0.52 x 20 L Asx216
' 12x0.5x0.25 3x0.25
5 +1.18 +1
(0.5+0.67x0.371) 0.371

7703mm? = Ag
o LS Dpans) JalrazaiV) A glie ol (S il 280 (S 130 L

0.67py x16.235% 0.371
0.25_ 52, 067 (0%
0.5 0.5 0.5

7703MM? = Ay e 2aixis Sl Ll 31 <6850mm? = Agg 5 0.0274 = p
16 s anmill (9 Floall ALl 7856mMM? = 25416 Jexins
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(7x371-16x25)/16 =48mm
5¢48 > 1.5dp =37.5mm« 48 mm > 40 mm 4 : o4 5 A Ghaaall Gaa dagll o2

Loall B Y i) g< 48mm
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