


Types of Structures

and Loads




1.1 Introduction

A structure refers to a system of connected parts used to support a load.
Important examples related to civil engineering include buildings, bridges,
and towers: and in other branches of engineering, ship and aircraft frames,
tanks, pressure vessels, mechanical systems, and electrical supporting
structures are important.

1.2 Classification of Structures

It 15 important for a structural engineer to recognize the various types
of elements composing a structure and to be able to classify structures
as to their form and function. We will introduce some of these aspects
now and expand on them at appropriate points throughout the text.

Structural Elements. Some of the more common elements from
which structures are composed are as follows.

Tie Rods. Structural members subjected to a tensile force are often
referred to as fie rods or bracing struts. Due to the nature of this load,

these members are rather slender. and are often chosen from rods. bars,
angles, or channels, Fig. 1-1.
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Beams. Beams are usually straight horizontal members used
primarily to carry vertical loads. Quite often they are classified according
to the way they are supported, as indicated in Fig. 1-2. In particular,
when the cross section varies the beam is referred to as tapered or
haunched. Beam cross sections may also be “built up™ by adding plates to
their top and bottom.

The prestressed concrete girders are simply
supported and are used for this highway
bridge.

The steel reinforcement cage shown on the

Shown are typical splice plate joints used right and left is used to resist any tension
to connect the steel girders of a highway [J that may develop in the concrete beams
Eridoa = =N which will be formed around it.
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Columns. Members that are generally vertical and resist axial compressive

loads are referred to as columns, Fig. 1-4. Tubes and wide-flange cross
sections are often used for metal columns, and circular and square cross
sections with reinforcing rods are used for those made of concrete.

Occasionally, columns are subjected to both an axial load and a bending
moment as shown in the figure. These members are referred to as beam

coltmns.

| B et 0 Wide-flange members are often used for
column - - P e LA 5 5 ;
beam column o “SSa  columns. Here is an example of a beam

Fio. 14 column.




Types of Structures. The combination of structural elements and
the materials from which they are composed 1s referred to as a structural
system. Each system 1s constructed of one or more of four basic types of
structures. Ranked in order of complexity of their force analysis, they are
as follows.

Trusses. When the span of a structure is required to be large and its
depth is not an important criterion for design, a truss may be selected.
Trusses consist of slender elements, usually arranged in triangular fashion.

Planar trusses are composed of members that lie in the same plane and
are frequently used for bridge and roof support, whereas space frusses have
members extending in three dimensions and are suitable for derricks

and towers.

LLoading causes bending of truss,
which develops compression in top
members. tension in bottom
members.




Cables and Arches. Two other forms of structures used to span long
distances are the cable and the arch. Cables are usually flexible and carry
their loads in tension. They are commonly used to support bridges,
Fig. 1-64. and building roofs. When used for these purposes, the cable has
an advantage over the beam and the truss, especially for spans that are
greater than 150 ft (46 m). Because they are always in tension, cables will
not become unstable and suddenly collapse, as may happen with beams or

trusses. Furthermore, the truss will require added costs for construction
and increased depth as the span increases. Use of cables, on the other
hand, is limited only by their sag, weight, and methods of anchorage.

The arch achieves its strength in compression, since it has a reverse
curvature to that of the cable. The arch must be rigid, however, in order
to maintain its shape, and this results in secondary loadings involving
shear and moment, which must be considered in its design. Arches are
frequently used in bridge structures, Fig. 1-66, dome roofs, and for
openings in masonry walls.

Arches support their loads in compression.
(b)




Frames. Frames are often used in buildings and are composed of beams
and columns that are either pin or fixed connected, Fig. 1-7. Like trusses,
frames extend in two or three dimensions. The loading on a frame causes
bending of its members, and if it has rigid joint connections, this structure
1s generally “indeterminate” from a standpoint of analysis. The strength of
such a frame is derived from the moment interactions between the beams
and the columns at the rigid joints.

Surface Structures. A surface structure is made from a material having
a very small thickness compared to its other dimensions. Sometimes this
material is very flexible and can take the form of a tent or air-inflated
structure. In both cases the material acts as a membrane that is subjected
to pure tension.
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The roof of the “Georgia Dome” in Atlanta,
Georgia can be considered as a thin membrane.

Here i1s an example of a steel frame that is
used to support a crane rail. The frame can
be assumed fixed connected at its top joints
and pinned at the supports.




1.3 Loads

Once the dimensional requirements for a structure have been defined,
it becomes necessary to determine the loads the structure must
support. Often, it is the anticipation of the various loads that will be

imposed on the structure that provides the basic type of structure that
will be chosen for design. For example, high-rise structures must
endure large lateral loadings caused by wind, and so shear walls and
tubular frame systems are selected, whereas buildings located in areas
prone to earthquakes must be designed having ductile frames and
connections.

TABLE 1-1 Codes
General Building Codes

Minimum Design Loads for Buildings and Other Struciures,
ASCE/SEI 7-10, American Society of Civil Engineers
International Building Code

Design Codes

Building Code Reguirements for Reinforced Concrete, Am. Conc. Inst. ( ACI)

Manual of Steel Construction, American Institute of Steel Construction ( AISC)

Standard Specifications for Highway Bridges, American Association of State
Highway and Transportation Officials (AASHTO)

National Design Specification for Wood Consiruction, American Forest and
Paper Association ( AFPA)

Manual for Railway Engineering, American Railway Engineering
Association (AREA)




Dead Loads. Dead loads consist of the weights of the various
structural members and the weights of any objects that are permanently
attached to the structure. Hence, for a building, the dead loads include
the weights of the columns, beams, and girders, the floor slab, roofing,
walls, windows, plumbing, electrical fixtures, and other miscellaneous
attachments.

In some cases, a structural dead load can be estimated satisfactorily
from simple formulas based on the weights and sizes of similar
structures. Through experience one can also derive a “feeling” for the
magnitude of these loadings. For example, the average weight for timber
buildings is 40—50 Ib/ft* (1.9-2.4 kN/m?), for steel framed buildings it is
60-75 Ib/ft* (2.9-3.6 kN/m?), and for reinforced concrete buildings it is
110-130 Ib/ft* (5.3—6.2 kN/m?*). Ordinarily, though, once the materials
and sizes of the various components of the structure are determined,
their weights can be found from tables that list their densities.

The densities of typical materials used in construction are listed in
Table 1-2, and a portion of a table listing the weights of typical building




TABLE 1-2  Minimum Densities for Design Loads
from Materials* Walls kN/m?*

b /ft? kN/m? 4-in. (102 mm) clay brick 1.87
AL 170 2.7 8-in. (203 mm) clay brick 378

L 12-in. (305 mm ) clay brick g 3.51
Concrete, plain cinder 108 17.0
Concrete, plain stone 144 22.6 Frame Partitions and Walls
Concrete, reinforced cinder 111 17.4
Concrele. reinforced stone 150 23.6
Clay, dry 63 9.9
Clay, damp 110 17.3
Sand and gravel. dry. loose 1000 15.7
Sand and gravel, wet 120 18.9
Masonry, lightweight solid concrete 105 16.5 Floor Fill
Masonry, normal weight 135 21.2

Exterior stud walls with brick veneer

Windows, glass, frame and sash

Wood studs 2 % 4in., (51 ¥ 102 mm) unplastered

Wood studs 2 % 4in., (51 ¥ 102 mm) plastered one side
Wood studs 2 X 41in., (31 x 102 mm) plastered two sides

Cinder concrete, per inch (mm)

Plywood 36 5.7 Lightweight concrete, plain, per inch (mm)
Steel, cold-drawn 492 713 Stone concrete, per inch (mm)

Wood, Douglas Fir 34 2.3 e
Wood. Southern Pine 37 3.8 Ceilings

Wood, spruce 29 45 Acoustical fiberboard 0.05
Plaster on tile or concrete 0.24

*Reproduced with permission from American Society of Civil Engmeers Euspﬂﬂd.gd metal lath and gypsum pfaster 10 AR
Minimum Design Loads for Buildings and Other Structures, ASCESSEL T-10. .-‘!'Lsphﬂll shineles 2 .10

Copics of this standard may be purchased from ASCE at www.pubs.asce.orpg, Eitcrboant ?—in. (13 mm) 0.75 0.04

*Reproduced with permissicn [rom American Socicty of Civil Enginecrs Minimum Design Lomds
for Buildings and Other Structures, ASCESSEI 7-10.




Live Loads. Live Loads can vary both in their magnitude and
location. They may be caused by the weights of objects temporarily
placed on a structure, moving vehicles, or natural forces. The minimum
live loads specified in codes are determined from studying the history
of their effects on existing structures. Usually, these loads include
additional protection against excessive deflection or sudden overload. In
Chapter 6 we will develop techniques for specifying the proper location
of live loads on the structure so that they cause the greatest stress or
deflection of the members. Various types of live loads will now be
discussed.

Building Loads. The floors of buildings are assumed to be subjected

to uniform live loads, which depend on the purpose for which the
building is designed. These loadings are generally tabulated in local,
state, or national codes. A representative sample of such minimum live
loadings, taken from the ASCE 7-10 Standard, is shown in Table 1-4. The
values are determined from a history of loading various buildings. They
include some protection against the possibility of overload due to
emergency situations, construction loads, and serviceability requirements
due to vibration. In addition to uniform loads, some codes specify
minimum concentrated live [oads, caused by hand carts, automobiles, etc.,
which must also be applied anywhere to the floor system. For example,
both uniform and concentrated live loads must be considered in the
design of an automobile parking deck.

The live floor loading in this classroom
consists of desks, chairs and laboratory
equipment. For design the ASCE 7-10
Standard specifies a loading of 40 psf or
1.92 kN/m’.




Live Load Live Load
Occupancy or Use psf kN/m* Occupancy or Use psf kMN/m?

Assembly areas and theaters Residential
Fixed seals Bl 2.87 Dwellings (one- and two-family) 40 1.92
Movable seats 100 4.79 Hotels and multifamily houses
Garages (passenger cars only) 50 2.40 Private rooms and corridors 40 1.92
Office buildings Public rooms and corridors 4.79
Lobbies 10K 4.79 Schools
Offices 30 240 Classrooms 40 1.92
Storage warehouse Corridors above first floor 3.83
Light 125 6.00
Heavy 230 11.97

*Reproduced wath permassion from Minimum Design Loads for Buildings and Ocher Structures, ASCE/SET 7-10.

For some types of buildings having very large floor areas, many codes
will allow a reduction in the uniform live load for a floor, since it is

unlikely that the prescribed live load will occur simultaneously throughout
the entire structure at any one time. For example, ASCE 7-10 allows a
reduction of live load on a member having an influence area (K;; Ay) of
400 ft* (37.2 n13}| or more. This reduced live load is calculated using the
following equation:
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L =1L (U.ES + ) (FPS units)

L= Lf,({}.ES +

reduced design live load per square foot or square meter of area
supported by the member.

unreduced design live load per square foot or square meter of
area supported by the member (see Table 1-4).

K ;; = live load element factor. For interior columns K;; = 4.
Ay = tributary area in square feet or square meters.*

The reduced live load defined by Eq. 1-1 15 limited to not less than 50%
of L, for members supporting one floor, or not less than 40% of L, for
members supporting more than one floor. No reduction is allowed for
loads exceeding 100 Ib/ft* (4.79 kN/m?). or for structures used for public
assembly, garages, or roofs. Example 1-2 illustrates Eq. 1-1's application.




A two-story office building shown in the photo has interior columns
that are spaced 22 ft apart in two perpendicular directions. If the (flat)
roof loading is 20 Ib/ ft*, determine the reduced live load supported by
a typical interior column located at ground level.




SOLUTION
As shown in Fig. 1-9, each interior column has a tnbutﬂnf area or
effective loaded area of Ay = (22 ft) (22 ft) = 484 ft. A -E,l'ﬂl]l'ld floor

column therefore supports a roof live load of
Fr = (20 1b/ft*)(484 ft*) = 9680 1b = 9.68 k

This load cannot be reduced, since it is not a floor load. For the second
floor, the live load is taken from Table 1-4: L, = 50 Ib/ft®>. Since
Kir = 4. then 4A; = 4(484 ft") = 1936 ft* and 1936 ft* > 400 ft",
the live load can be reduced using Eq. 1-1. Thus,

V1936

The load reduction here is (29.55/50)100% = 59.1% = 50%. O.K.
Therefore,

L = 5{]({}25 +

) = 29,55 Ib/ft?

Fp = (29.55 Ib/ft*)(484 ft>) = 143001b = 143 k
The total live load supported by the ground-floor column is thus

F=Fp+ Fp=968k + 143k =240k Ans




Highway Bridge Loads. The primary live loads on bridge spans are
those due to traffic, and the heaviest vehicle loading encountered is that
caused by a series of trucks. Specifications for truck loadings on highway
bridges are reported in the LRFD Bridge Design Specifications of the
American Association of State and Highway Transportation Officials
(AASHTO). For two-axle trucks, these loads are designated with an H,
followed by the weight of the truck in tons and another number which
oives the year of the specifications in which the load was reported.
H-series truck weights vary from 10 to 20 tons. However, bridges located
on major highways, which carry a great deal of traffic, are often designed
for two-axle trucks plus a one-axle semitrailer as in Fig. 1-10. These are

designated as HS loadings. In general, a truck loading selected for design
depends upon the type of bridge, its location, and the type of traffic
anticipated.




Railroad Bridge Loads. The loadings on railroad bridees, as in
Fig. 1-11, are specified in the Specifications for Steel Railway Bridges
published by the American Railroad Engineers Association (AREA).
Normally, E loads, as originally devised by Theodore Cooper in 1894,
were used for design. B. Steirnmann has since updated Cooper’s load
distribution and has devised a series of M loadings, which are currently
acceptable for design. Since train loadings involve a complicated series
of concentrated forces, to simplify hand calculations, tables and graphs
are sometimes used in conjunction with influence lines to obtain the
critical load. Also, computer programs are used for this purpose.




Impact Loads. Moving vehicles may bounce or sidesway as they
move over a bridge, and therefore they impart an impact to the deck. The
percentage increase of the live loads due to impact is called the impact
factor, I.'This factor is generally obtained from formulas developed from
experimental evidence. For example, for highway bridges the AASHTO
specifications require that

but not larger than 0.3

Wind Loads. When structures block the flow of wind, the wind's
kinetic energy is converted into potential energy of pressure, which
causes a wind loading. The effect of wind on a structure depends upon
the density and velocity of the air, the angle of incidence of the wind, the
shape and stiffness of the structure, and the roughness of its surface. For
design purposes, wind loadings can be treated using either a static or a
dynamic approach.




For the static approach, the fluctuating pressure caused by a constantly
blowing wind is approximated by a mean velocity pressure that acts on
the structure. This pressure g is defined by its kinetic energy. g = :E_.plf'{
where p is the density of the air and V is its velocity. According to the
ASCE 7-10 Standard. this equation is modified to account for the
importance of the structure, its height, and the terrain in which it is
located. It is represented as

q. = 0.00256K K., K ;V? (Ib/ft?)
g. = 0.613K_K_ K, V? (N/m?)

where

V' = the velocity in mi‘h (m/s) of a 3-second gust of wind measured
33 ft (10 m) above the ground. Specific values depend upon
the “category” of the structure obtained from a wind map. For

example, the interior portion of the continental United States
reports a wind speed of 105 mi‘h (47 m/s) if the structure

is an agricultural or storage building, since it is of low risk to
human life in the event of a failure. The wind speed is 120 mi/h
(54 m/s) for cases where the structure is a hospital, since its
failure would cause substantial loss of human life.
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Hurricane winds caused this damage to a condominium in

Miami, Florida.
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the velocity pressure exposure coefficient, which is a function
of height and depends upon the ground terrain. Table 1-5 lists
values for a structure which is located in open terrain with
scattered low-lying obstructions.

a factor that accounts for wind speed increases due to hills and
escarpments. For flat ground K, = 1.0.

a factor that accounts for the direction of the wind. It is used only
when the structure is subjected to combinations of loads (see
Sec. 1-4). For wind acting alone, K; = 1.0.

TABLE 1-5 Velocity Pressure
Exposure Coefficient for Terrain with
Low-Lying Obstructions




Design Wind Pressure for Enclosed Buildings. Once the value for g,
is obtained, the design pressure can be determined from a list of
relevant equations listed in the ASCE 7-10 Standard. The choice
depends upon the flexibility and height of the structure, and whether
the design is for the main wind-force resisting system. or for the
building’s components and cladding. For example, using a “directional
procedure” the wind-pressure on an enclosed building of any height is
determined using a (wo-termed equation resulting from both external
and internal pressures, namely,

P =gGC, — gyl GC )

g for the windward wall at height z above the ground
(Eg. 1-2), and g = gy for the leeward walls, side walls,
and roof, where £ = h. the mean height of the rool

a wind-gust effect factor, which depends upon the exposure.
For example, for a rigid structure, G = 0.85.
a wall or roof pressure coefficient determined from a
table. These tabular values for the walls and a roof pitch of
f = 10" are given in Fig. 1-12. Note in the elevation view
Wind blowing on a wall will Lend to tip a that the pressure will vary with height on the windward
building or cause it to sidesway. To prevent . S . _ e 3 ]
i s b Bae e B o side of the hmldmg.“hm:::ah on the remaining sides and
provide stability. Also, see p. 46, - on the roof the pressure is assumed to be constant.
Negative values indicale pressures acting away from the
surface.
the internal pressure coefficient, which depends upon the
type of openings in the building. For fully enclosed
buildings (GCp;) = +0.18. Here the signs indicate that
either positive or negative (suction) pressure can occur
within the building.




TITEERR

L]

L

i

elevation

Surface L/B

Windward Leeward

Windward | All values| 0.8 y angle & angfe
wall Wind

direction| hk/L 1 g = 1F

Leeward 0—1 0.5
wall 2 0.3 =75 —0.7 —0.3

5 Mormal 1o 5 o
=4 —1.2 T s —{.9 —0.5
ridge =10 | —13 | —07

Side walls | Al values | —07 ]

: Maximum negative roof pressure
Wall pressure coefficients, G, coefficients, 41'],, for use with g,

(&) {b)




The enclosed building shown in the photo and in Fig. 1-13a is used for
storage purposes and is located outside of Chicago, Illinois on open
flat terrain. When the wind is directed as shown, determine the design
wind pressure acting on the roof and sides of the building using the
ASCE 7-10 Specifications,

SOLUTION

First the wind pressure will be determined using Eq. 1-2. The basic
wind speed is ¥V = 105 mi/h, since the building is used for storage.
Also, for flat terrain, K, = 1.0. Since only wind loading is being
considered, K; = L.0. Therefore.

g, = 0.00256 K K 4K V?
= 0.00256 K(1.0)(1.0)(105)>

From Fig. 1-13a. A' = 75 tan 10" = 1322 ft so that the mean height
of the roof is A = 25 + 13.22/2 = 31.6 ft. Using the values of K in
Table 1-5, calculated values of the pressure profile are listed in the table
in Fig. 1-13b. Note the value of K, was determined by linear interpola-
tionforz = h,ie,(1.04 — 0.98)/(40 — 30) = (1.04 — K.}/(40 — 31.6),
K. = 0.990, and so g, = 28.22(0.990}) = 27.9 psL

In order to apply Eq. 1-3 the gust factor is G = (.85, and (GCp) =
+().18. Thus




o= qGEp == "-i-I'.Fr[GCpI.:'

— g(0.85)C, — 27.9(+0.18)
~ (L.85¢C, ¥ 5.03

(1)

The pressure loadings are obtained from this equation using the
calculated values for g, listed in Fig. 1-13b in accordance with the

wind-pressure profile in Fig. 1-12.




Windward Wall. Here the pressure varies with height z since g,GC,
must be used. For all values of L/B.C, = (1.8, so that from Eq. (1),

Po—1s = 113 pst or 21.3 psf
pan =122 pst or 223 pst

P = 13.0psf or 231 psf

Leeward Wall. Here L/B = 2(75)/150 = 1, so that C, = —0.5.
Also, g = gy and so from Eq. (1),

p=—169psf or —6.84psi

Side Walls. For all values of L/B. C, = —0.7, and therefore since
we musl use g = gy in Eq. (1). we have

p=—21l6psf or —11.6psl

Windward Reof. Here h/L = 31.6/2(75) = 0211 < 0.25, 5o that
C, = —0.7T and g = gy. Thus,

p=-—2l6psf or —11.6psf




Leeward Roof. In thiscase C, = —0.3; therefore with g = g;,. we get

p=-—-122psf or —2.09pst

These two sets of loadings are shown on the elevation of the building,
representing either positive or negative (suction) internal building
pressure, Fig. 1-13¢. The main framing structure of the building must
resist these loadings as well as for separate loadings calculated from
wind blowing on the front or rear of the building.




Snow Loads. Insome parts of the country, roof loading due to snow
can be quite severe, and therefore protection against possible failure is of
primary concern. Design loadings typically depend on the building’s
peneral shape and roof geometry, wind exposure, location. its
importance, and whether or not it 1s heated. Like wind, snow loads in
the ASCE 7-10 Standard are generally determined from a zone map
reporting S0-year recurrence intervals of an extreme snow depth. For
example, on the relatively flat elevation throughout the mid-section of
[linois and Indiana, the ground snow loading is 20} Ib/ft” (0.96 kN/m?).
However, for areas of Montana, specific case studies of ground snow
loadings are needed due to the variable elevations throughout the state.
Specifications for snow loads are covered in the ASCE 7-10 Standard,

although no single code can cover all the implications of this type of
loading.

[f a roof is flat, defined as having a slope of less than 5%, then the
pressure loading on the roof can be obtained by modifying the ground
snow loading, p.. by the following empirical formula

Excessive snow and ice loadings act on this
roofL




pr = 0.7C.Ci,p,

Here

C, = an exposure factor which depends upon the terrain. For example.
for a fully exposed roof in an unobstructed area, C, = (.8,

whereas if the roof is sheltered and located in the center of a large
city,then C, = 1.2,

C, = a thermal factor which refers to the average temperature within
the building. For unheated structures kept below freezing
C, = 1.2, whereas if the roof is supporting a normally heated
structure, then C, = 1.0.

I, = the importance factor as it relates to occupancy. For example,
I, = (.80 for agriculture and storage facilities, and f, = 1.20 for
schools and hospitals.

It p, =:20 lhf’ft (0.96 kN/m" %), then use the largest value for p;. either
computed [mm the above equation or from p, = I,p.. If p, = 20 Ih’ft'
(0.96 kN/m* } then use py = 1,{20 Ib/ft).




EXAMPLE 1.4

The unheated storage facility shown in Fip. 1-14 is located on flat
open terrain in southern Illinois, where the specified ground snow

load is 15 Ib/ft". Determine the design snow load on the roof which
has a slope of 4%.

SOLUTION

Since the roof slope is < 3%, we will use Eq. 1-5. Here,
C, = 0.8 due to the open area, C;, = 1.2 and [, = 0.8.
Thus,

Pr= D-"rcecr I.'.'Pg
= 0.7(0.8)(1.2)(0.8)(15 Ib/ft?) = 8.06 Ib/ft2

Since p, = 15 Ib/ft* < 20 1b/ft?, then also

py = Ip, = 12(15 Ib/ft*) = 18 Ib/ft?

By comparison, choose

pr = 18 Ib/ft’




Earthquake Loads. Earthquakes produce loadings on a structure
through its interaction with the ground and its response characteristics.
These loadings result from the structure’s distortion caused by the
ground’s motion and the lateral resistance of the structure. Their
magnitude depends on the amount and type of ground accelerations and
the mass and stiffness of the structure. In order to provide some insight
as to the nature of earthquake loads, consider the simple structural
model shown in Fg. 1-15. This model may represent a single-story
building, where the top block is the “lumped™ mass of the roof, and the
middle block is the lumped stiffness of all the building’s columns. During
an earthquake the ground vibrates both horizontally and vertically. The
horizontal accelerations create shear forces in the column that put the
block in sequential motion with the ground. If the column is stiff and
the block has a small mass, the period of vibration of the block will be
short and the block will accelerate with the same motion as [the ground
and undergo only slight relative displacements. For an actual structure
which is designed to have large amounts of bracing and stiff connections
this can be beneficial, since less stress is developed in the members. On the
other hand, if the column in Fig 1-15 is very flexible and the block has a
large mass, then earthquake-induced motion will cause small accelerations
of the block and large relative displacements.

lumped mass
of roof

lumped mass
of colamns




For small structures, a static analysis for earthquake design may be
satisfactory. This case approximates the dynamic loads by a set of
externally applied stafic forces that are applied laterally to the structure.
One such method for doing this is reported in the ASCE 7-10 Standard.
It is based upon finding a seismic response coefficient, C,, determined
from the soil properties, the ground accelerations, and the vibrational
response of the structure. For most structures, this coefficient is then
multiplied by the structure’s total dead load W to obtain the “base shear™
in the structure. The value of C, is actually determined from

Sps

C =R

&

= the spectral response acceleration for short periods of vibration.

= a response modification factor that depends upon the ductility of
the structure. Steel frame members which are highly ductile can
have a value as high as 8, whereas reinforced concrete frames
can have a value as low as 3.
the importance factor that depends upon the use of the building.
For example, I, = 1 for agriculture and storage facilities, and
I, = 1.5 for hospitals and other essential facilities.




Hydrostatic and Soil Pressure. When structures are used to retain
water, soil, or granular materials, the pressure developed by these
loadings becomes an important criterion for their design. Examples of
such types of structures include tanks. dams, ships, bulkheads, and
retaining walls. Here the laws of hydrostatics and soil mechanics are
applied to define the intensity of the loadings on the structure.

The design of this retaining wall requires
estimating the soil pressure acting on it
Also, the gate of the lock will be subjected
to hydrostatic pressure that must be
considered for its design.

Other Natural Loads. Several other types of live loads may also
have to be considered in the design of a structure, depending on its
location or use. These include the effect of blast, temperature changes,
and differential settlement of the foundation.




1.4 Structural Design

Whenever a structure is designed, it is important to give consideration
to both material and load uncertainties. These uncertainties include a
possible vaniability in material properties, residual stress in materials,
intended measurements being different from fabricated sizes, loadings
due to vibration or impact, and material corrosion or decay.

ASD. Allowable-stress design (ASD) methods include hoth the
material and load uncertainties into a single factor of safety. The many
types of loads discussed previously can occur simultaneously on a
structure, but it is very unlikely that the maximum of all these loads will
occur at the same time. For example, both maximum wind and
earthquake loads normally do not act simultaneously on a structure. For
allowable-stress design the computed elastic stress in the material must
not exceed the allowable stress for each of various load combinations.
Typical load combinations as specified by the ASCE 7-10 Standard
include

* dead load
¢ (.6 (deadload) + 0.6 (wind load)
¢ (.6 (dead load) + 0.7 (earthquake load)




LRFD. Since uncertainty can be considered using probability theory,
there has been an increasing trend to separate material uncertainty from
load uncertainty. This method is called strength design or LRFD (load
and resistance factor design). For example. to account for the uncertainty
of loads, this method uses load factors applied to the loads or

combinations of loads. According to the ASCE 7-10 Standard. some of
the load factors and combinations are

dead load)
dead load) + 1.6 (live load) + 0.5 (snow load)

1.4 (
1.2 (
* ()Y (dead load) + 1.0 (wind load)
0.9 (dead load) + 1.0 (earthquake load)

In all these cases, the combination of loads is thought to provide a
maximum, yet realistic loading on the structure.




Analysis of Statically

Determinate Structures




2.1 I|dealized Structure

An exact analysis of a structure can never be carried out, since estimates
always have to be made of the loadings and the strength of the
materials composing the structure. Furthermore, points of application
for the loadings must also be estimated. It i1s important, therefore,
that the structural engineer develop the ability to model or idealize a
structure so that he or she can perform a practical force analysis of the
members. In this section we will develop the basic techniques necessary
to do this.

Structural members are joined together in various ways
depending on the intent of the designer. The three types of joints most often specified are
the pin connection, the roller support, and the fixed joint. A pin-connected joint and a roller
support allow some freedom for slight rotation, whereas a fixed joint allows no relative
rotation between the connected members and Is consequently more expensive to
fabricate.



Il

[)vpical "pin_sup})()rlcd" connection (n]c[alx) l)‘picai “fixc(i-supr’(.‘l”“.';.f(:l‘~ connection { n]Ctal_)
(a) (b)

= § = £

typical “roller-supported™ connection {concrete) typical “fixed-supported™ connection (concrete)
(a) (b)




X [ B

pin support pin-connected joint fixed support fixed-connected joint

L s

torsional spring support torsional spring joint

Fie, 2-3

actual beam idealized beam
(&) (b}

Fig. 24




Rollers and associated bearing pads are
used to support the prestressed concrete
girders of a highway bridge.

A typical rocker support used for a bridge
girder.

The short link is used to connect the two Typical pin used to support the steel
girders of the highway bridge and allow girder of a railroad bridge.
for thermal expansion of the deck.




"TABLE 2-1 Supports for Coplanar Structures

Type of Connection Idealized Symbol Reaction Number of Unknowns

(1) g‘_;;::‘\ngm cable

One unknown. The reaction is a
force that acts in the direction
of the cable or link.

One unknown. The reaction is a
force that acts perpendicular to
the surface at the point of contact.

One unknown. The reaction is a
force that acts perpendicular to

: the surface at the point of contact.
smooth contacting surface




(4)

smooth pin-connected collar

One unknown. The reaction is a
force thal acts perpendicular to
the surface al the point of contact.

smooth pin or hinge

Two unknowns. The reactions are
two force components.

(6)

shider

:g;_

fixed-connected collar

Two unknowns. The reactions
are a force and a moment.

fixed support

Three unknowns. The reactions are
the moment and the two force
components.




Idealized Structure. Having stated the various ways in which the
connections on a structure can be idealized, we are now ready to discuss
some of the techniques used to represent various structural systems by
idealized models.
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actual structure
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Tributary Loadings. When flat surfaces such as walls, floors, or roofs
are supported by a structural frame, it is necessary to determine how the
load on these surfaces is transmitted to the various structural elements
used for their support. There are generally two ways in which this can be
done. The choice depends on the geometry of the structural system, the
material from which it is made, and the method of its construction.

One-Way System. A slab or deck that is supported such that it delivers
its load to the supporting members by one-way action, 1s often referred to
as a one-way slab. To illustrate the method of load transmussion, consider
the framing system shown in Fig. 2-11a where the beams AB, CD,and EF
rest on the girders AE and BF. If a uniform load of 100 Ib/ft* is placed on
the slab, then the center beam CD is assumed to support the load acting
on the rributary area shown dark shaded on the structural framing plan in
Fio. 2-116. Memher CD 15 therefore subjected to a [inear distribution of
load of (100 Ihf[l J(5 ft) = 500 Ib/ft, shown on the idealized beam in
Fip. 2-11c. The reactions on this beam (2500 Ib) would then be applied to
the center of the girders AL (and BF).shown idealized in Fig. 2-11d. Using
this same concept, do you see how the remaining portion of the slab loading
15 transmitted to the ends of the pirder as 1250 1b?

The structural framework of this building
consists of concrete floor joists, which were
formed on site using metal pans These joists
are simply supported on the girders, which in
turn are simply supported on the columns.
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2500 1b

1250 1b

2500 1b 2500 Ib - _ .
2t

idealized beam idealized girder
(c) (d)




According to the American Concrete Institute, ACI 318 code, if L, = L,
and if the span ratio ( L,/ L) = 2. the siab will behave as a one-way slab,
since as L, becomes smaller, the beams AB, CD, and EF provide the
oreater stiffness to carry the load.

concrete slab is
reinforced in A ;
two directions, ——_' [
poured on plane
forms

o 0

idealized framing plan
for one-way slab action
reqoires L5 /Ly =2

(b)




Two-Way System. If, according to the ACI 318 concrete code the
support ratio in Fig. 2—-12b is (L;/Ly) = 2, the load is assumed to be
delivered to the supporting beams and girders in two directions. When
this is the case the slab is referred to as a fwo-way slab. To show one
method of treating this case. consider the square reinforced concrete slab
in Fig. 2—-13a, which is supported by four 10-ft-long edge beams, AB, BD,
DC,and CA. Here L,/ = 1. Due to two-way slab action, the assumed
tributary area for beam ARF is shown dark shaded in Fig. 2-135. This area
is determined by constructing diagonal 45° lines as shown. Hence if a
uniform load of 100 1b/ft" is applied to the slab, a peak intensity of
(lﬂﬂlh,-"ﬂl}fﬁ ft) = 500 1b/ft will be applied to the center of beam APB,
resulting in a friangular load distribution shown in Fig. 2-13¢. For other
secometries that cause two-way action, a similar procedure can be used.

500 Ib /i

5ft ! 5 fit
idealized framing plan 2 idealized beam
(b} (<)

Fig. 2-13




[

— 5 ft — —5 ft —
idealized framing plan

(a)

For example, if L,/L; = 1.5 it is then necessary to construct 45° lines

that intersect as shown in Fig. 2-14a. A 100-1b/ft” loading placed on the
slab will then produce frapezoidal and triangular distributed loads on
members AB and AC, Fig. 2148 and 2-14c, respectively.

500 Ib/ft 500 1b /1t

A | | i} A I/
I—ifi——ﬁft——ﬁft—l I—ﬁfl——i ft —

idealized beam idealized beam

(b) (c)
Fie, 2-14



EXAMPLE |2.1

The floor of a classroom is to be supported by the bar joists shown in
Fig. 2—15a. Each joist is 15 ft long and they are spaced 2.5 ft on centers.
The floor itself is to be made from lightweight concrete that is 4 in.
thick. Neglect the weight of the joists and the corrugated metal deck,
and determine the load that acts along each joist.

SOLUTION

The dead load on the floor is due to the weight of the concrete slab. From
Table 1-3 for 4 in. of lightweight concrete it is (4)(8 Ib/ft*) = 32 Ib/ft°.
From Table 14, the live load for a classroom is 40 lb,r’ftl. Thus the total
floor load is 32 Ib/ft* + 401b/ft* = 72 Ib/ft>. For the floor system,
L,=25ftand L, = 15 ft. Since L,/ = 2 the concrete slab is treated
as a one-way slab. The tributary area for each joist is shown in Fig. 2-15b.
Therefore the umiform load along its length is

w = 72 Ib/ft}(2.5 ft) = 180 Ib/ft




This loading and the end reactions on each joist are shown in Fig. 2-15¢.

1350 1b




The flat roof of the steel-frame building shown in the photo is
intended to support a total load of 2 kN/m- over its surface.

Determine the roof load within region ABCD that is transmitted to
beam BC.The dimensions are shown in Fig. 2-16a4.

i 4m i
D (
I
1.5m
2m
I.5m
|
F  2m " 2m !




SOLUTION

In this case I, = 5m and Ly = 4m. Since [,/L; = 125 < 2, we
have two-way slab action. The tributary loading along each edge beam
is shown in Fig. 2-16a, where the lighter shaded trapezoidal area of
loading is transmitted to member BC. The peak intensity of this loading
is (2 L:H_.-'mj}(z m) = 4kN/m. As a result, the distribution of load
along BC i1s shown in Fig. 2-16b.

4 kN /m

This process of tributary load transmission should alse be calculated
for the region to the right of BC shown in the photo, and this load

should also be placed on BC. See the next example.




The concrete girders shown in the photo of the passenger car park-
ing garage span 30 ft and are 15 ft on center. If the floor slab s 5 in.
thick and made of reinforced stone concrete, and the specified live
load is 50 1b/ft? (see Table 1-4), determine the distributed load the
floor system transmits to each interior girder.

SOLUTION
Here, [, = 30 ft and L, = 15 ft, so that L,/L, = 2. We have a two-
way slab. From Table 1-2, for reinforced stone concrete, the specific

weight of the concrete is 150 Ib/ft". Thus the design floor loading is

1 2D
p= 150 ih_.-’ft"(ﬁ ft) + 50 Ib/ft* = 112.5 Ib/ft’




5
p = 150 ib_.-fﬂ:"(ﬁftj + 50 Ib/f2 = 112.5 Ib/ft’

A traperzoidal distributed loading is transmitted to each interior
girder AB from each of its sides. The maximum intensity of each of
these distributed loadings is (112.5 Ib/ft)(7.5 ft) = 843.75 Ib/ft. so that
on the girder this intensity becomes 2(843.75 Ib/ft) = 1687.5 Ib/1t,
Fig. 2-17b. Note: For design, consideration should also be given to the

weight of the girder.

156

1687.5 1b /fi




2.2 Principle of Superposition

The principle of superposition forms the basis for much of the theory of
structural analysis. It may be stated as follows: The total displacement or
internal leadings (stress) at a point in a structure subjected to several
external loadings can be determined by adding together the displacements
or internal loadings (stress) caused by each of the external loads acting
separately. For this statement to be valid it is necessary that a linear
relationship exist among the loads, stresses, and displacements.

Two requirements must be imposed for the principle of superposition
to apply:

1. The material must behave in a linear-elastic manner. so that
Hooke’s law is valid, and therefore the load will be proportional to
displacement.

2. The geometry of the structure must not undergo significant change
when the loads are applied, 1.e., small displacement theory applies.
Large displacements will sigmificantly change the position and
orientation of the loads. An example would be a cantilevered thin
rod subjected to a force at its end.




Throughout this text, these two requirements will be satisfied. Here only
linear-elastic material behavior occurs; and the displacements produced
by the loads will not significantly change the directions of applied
loadings nor the dimensions used to compute the moments of forces.
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The walls on the sides of this building are used to strengthen
its structure when the building 1s subjected to large hurricane
wind loadings applied to its front or back. These walls are
called “shear walls.”




2.3 Equations of Equilibrium

[t may be recalled from statics that a structure or one of its members is in
equilibrium when it maintains a balance of force and moment. In general
this requires that the force and moment equations of equilibrium be
satisfied along three independent axes. namely,

SF,=0 XF,=0 3IF,=

- 2.1
M, =0 EM,=0 3M, (5

The principal load-carrying portions of most structures, however, lie in a
single plane, and since the loads are also coplanar, the above requirements
for equilibrium reduce to




If the internal loadings at a specified point in a member are to be
determined, the method of sections must be used. This requires that a
“cut” or section be made perpendicular to the axis of the member at the
point where the internal loading 15 to be determined. A free-body
diagram of either segment of the “cut™ member is 1solated and the internal
loads are then determined from the equations of equilibrium applied to
the segment. In general, the internal loadings acting at the section will
consist of a normal force N, shear force V, and bending moment M, as
shown in Fig. 2-18.

internal loadings

Fie. 2-18




2.4 Determinacy and Stability

Before starting the force analysis of a structure, it 15 necessary to establish
the determinacy and stability of the structure.

Determinacy. The equilibrium equations provide both the necessary
and sufficient conditions for equilibrium. When all the forces in a structure
can be determined strictly from these equations, the structure is referred
to as statically determinate. Structures having more unknown forces than
available equilibrium equations are called statically indeterminate. As a
ceneral rule, a structure can be identified as being either statically
determinate or statically indeterminate by drawing free-body diagrams of
all its members, or selective parts of its members, and then comparing the
total number of unknown reactive force and moment components with
the total number of available equilibrium equations.® For a coplanar
structure there are at most three equilibrium equations for each part, so
that if there is a total of n parts and r force and moment reaction
components, we have

= 3n, statically determinate

r = 3n, statically indeterminate




Classify each of the beams shown in Fig. 2-19a through 2-194
as statically determinate or statically indeterminate. If statically
indeterminate, report the number of degrees of indeterminacy. The
beams are subjected to external loadings that are assumed to be known
and can act anywhere on the beams.

SOLUTION
Compound beams, i.e., those in Fig. 2-19¢ and 2-19d4, which are
composed of pin-connected members must be disassembled. Note

that in these cases, the unknown reactive forces acting between each
member must be shown in equal but opposite pairs. The free-body
diagrams of each member are shown. Applying r = 3n or r = 3n, the
resulting classifications are indicated.

t

Statically determinate




Statically indeterminate to the second degree

e

Statically determinate

o S S 54§

Statically indeterminate to the first degree

Fig. 2-19




Classify each of the pin-connected structures shown in Fig. 2-20a
through 2-20d as statically determinate or statically indeterminate. If
statically indeterminate, report the number of degrees of indeterminacy.
The structures are subjected to arbitrary external loadings that are
assumed to be known and can act anywhere on the structures,

SOLUTION

Classification of pin-connected structures is similar to that of beams.
The free-body diagrams of the members are shown. Applying r = 3n
or r = 3n, the resulting classifications are indicated.

R —

¢

r=Tln=2T7>%6
Statically indeterminate Lo the first
degree Ans

r=9n=39=9,
Statically determinate




r= 10, n=2 10> §,
Statically indeterminate to the fourth
degree

r=9n=39=9
Statically determinate

Ans




Classify each of the frames shown in Fig. 2-21a and 221/ as statically
determinate or statically indeterminate. If statically indeterminate,
report the number of degrees of indeterminacy. The frames are
subjected to external loadings that are assumed to be known and can
act anywhere on the frames.

SOLUTION

Unlike the beams and pin-connected structures of the previous

examples, frame structures consist of members that are connected

together by rigid joints. Sometimes the members form internal loops

as in Fig. 2-21a. Here ABCD forms a closed loop. In order to classify

these structures, it is necessary to use the method of sections and “cut”™

the loop apart. The free-body diagrams of the sectioned parts are

drawn and the frame can then be classified. Notice that only one

section through the loop is required, since once the unknowns at

the section are determined, the internal forces at any point in the ;:L};IT: :?j qf} 6, =
members can then be found using the method of sections and the l;#;czfzr':t R
equations of equilibrium. A second example of this is shown in = (a)

Fig. 2-21b. Although the frame in Fig. 2-21¢ has no closed loops




we can use this same method. using vertical sections, to classity it.
this case we can also just draw its complete free-body diagram. The
resulting classifications are indicated in each figure.

—

{This frame has no closed loops.)

Fr=18, n=3 18> 0,

Statically indeterminate to the

ninth degree Ans
(b)

r=%n=1,9=>73
Statically indeterminate Lo the
sixth degree Ans,

r=18,n=418 > 12,
statically indeterminate to the
sixth degree Ans




Stability. To ensure the equilibrium of a structure or its members. it is
not only necessary to satisfy the equations of equilibrium, but the
members must also be properly held or constrained by their supports.
Two situations may occur where the conditions for proper constraint
have not been met.

Partial Constraints. In some cases a structure or one of its members
may have fewer reactive forces than equations of equilibrium that must
be satisfied. The structure then becomes only partially constrained. For
example, consider the member shown in Fig. 2-22 with its corresponding
free-body diagram. Here the equation £F, = 0 will not be satisfied for
the loading conditions and therefore the member will be unstable.

Improper Constraints. In some cases there may be as many
unknown forces as there are equations of equilibrium: however, instability
or movement of a structure or its members can develop because of
improper constraining by the supports. This can occur if all the support
reactions are concurrent at a point. An example of this is shown in
Fig. 2-23. From the free-body diagram of the beam it i1s seen that the
summation of moments about point O will nof be equal to zero (Pd # 0); A \F”
Fy

thus rotation about point O will take place.

partial constraints

Fip. 2-22




Another way in which improper constraiming leads to instability occurs
when the reactive forces are all parallel. An example of this case is shown
in Fig. 2-24. Here when an inchned force P is applied, the summation of
forces in the horizontal direction will not equal zero.

e

parallel reactions




In general, then, a structure will be geometrically unstable —that is, it will
move slightly or collapse—if there are fewer reactive forces than equations
of equilibritem; or if there are enough reactions, instability will occur if the
lines of action of the reactive forces infersecl at 4 common point or are
parallel to one another. 1f the structure consists of several members or
components, local instability of one or several of these members can
senerally be determined by inspection. If the members form a collapsible
mechanism, the structure will be unstable. We will now formalize these
statements for a coplanar structure having n members or components
with r unknown reactions. Since three equilibrium equations are available
for each member or component, we have

r < 3n unstable

r = 3n unstable if member reactions are
concurrent or parallel or some of the
components form a collapsible mechanism

If the structure is unstable, i does not matter if it 15 statically
determinate or indeterminate. In all cases such types of structures must

be avoided in practice.




Classify each of the structures in Fig. 2-254 through 2-254 as stable or
unstable. The structures are subjected to arbitrary external loads that

are assumed to be known.

SOLUTION
The structures are classified as indicated.

A




2.5 Application of the Equations
of Equilibrium

Occasionally, the members of a structure are connected together in such a
way that the joints can be assumed as pins. Building frames and trusses
are typical examples that are often constructed in this manner. Provided a
pin-connected coplanar structure is properly constrained and contains no
more supports or members than are necessary to prevent collapse, the
forces acting at the joints and supports can be determined by applying the
three equations of equilibrium (2F, = 0, ZF , = (0, ZMy = 0) to each
member. Understandably, once the fu:-rues at ﬂ'lt’ joints are obtained, the
size of the members, connections, and supports can then be determined
on the basis of design code specifications.




Procedure for Analysis

The following procedure provides a method for determining the joint
reactions for structures composed of pin-connected members.

Free-Body Diagrams

® Disassemble the structure and draw a free-body diagram of each
member. Also, it may be convenient to supplement a member
free-body diagram with a free-body diagram of the entire sfructure.
Some or all of the support reactions can then be determined using
this diagram.

Recall that reactive forces common to two members act with

equal magnitudes but opposite directions on the respective free-
body diagrams of the members.

All two-force members should be identified. These members,
regardless of their shape, have no external loads on them. and
therefore their free-body diagrams are represented with equal
but opposite collinear forces acting on their ends.

In many cases it is possible to tell by inspection the proper
arrowhead sense of direction of an unknown force or couple
moment; however, if this seems difficult, the directional sense can
be assumed.




Equations of Equilibrium

¢ Count the total number of unknowns to make sure that an
equivalent number of equilibrium equations can be written for
solution. Except for two-force members, recall that in general
three equilibrium equations can be written for each member.

Many times, the solution for the unknowns will be straightforward
if the moment equation Mg, = 0 is applied about a point (O)
that Lies at the intersection of the lines of action of as many
unknown forces as possible.

When applying the force equations =ZF, =0 and XF, = (),
orient the x and y axes along lines that will provide the simplest
reduction of the forces into their x and y components.

If the solution of the equilibrium equations yields a negative
magnitude for an unknown force or couple moment, it indicates
that its arrowhead sense of direction is opposite to that which was

assumed on the free-body diagram.




Determine the reactions on the beam shown in Fig. 2-28a.

60 sin 60° k
Lot
A, A | cos

_»-' P —
10 ft—‘l—4 ft—¢

{b)

SOLUTION

Free-Body Diagram. As shown in Fig. 2-28b, the 60-k force is
resolved into x and y components. Furthermore. the 7-ft dimension line
is not needed since a couple moment is a free vector and can therefore
act anywhere on the beam for the purpose of computing the external
reactions.

Equations of Equilibrium. Applying Eqgs. 2-2 in a sequence, using
previously calculated results, we have

LSF. =00 A, — 60cos60° =0 . =300k Ans
(+ZM,=0;  —60sin 60°(10) + 60 cos 60°(1) + B,(14) — 50 = 0 , =385k Ans

+ 1ZF,=0;, —60sin60°+385+ A, =0 A, =134k Ans




15 kIN/m

iy

(a)

_H'D kN /m)12 m) = 60 kN
(5 EN/mi(12m) =

e | 60 kN
FHIBEM S o

AL §-

A

X

M,

Determine the reactions on the beam in Fig. 2-29a,

SOLUTION

Free-Body Diagram. As shown in Fig. 2-29b, the trapezoidal
distributed loading is segmented into a triangular and a uniform load.
The areas under the triangle and rectangle represent the resultani
forces. These forces act through the centroid of their corresponding

areas.
Equations of Equilibrium

LIF, =00 A, =0 Ans
+1SF,=0; A, —60 —60=0 A, = 120kN Ans

(+ZM,=0; —60(4) — 60(6) + My =0 M;=600kN-m Ans




Determine the reactions on the beam in Fig. 2-30g. Assume A is a pin
and the support at B is a roller (smooth surface).

500 b/ fit

e LITTTT]

SOLUTION

Free-Body Diagram. Asshown in Fig. 2-30b, the support (“roller™)
at B exerts a normal force on the beam at its point of contact. The line
of action of this force is defined by the 3—4-5 triangle.




3500 1b

Equations of Equilibrium. Resolving Ny into x and y components
and summing moments about A yields a direct solution for Nz Why?
Using this result, we can then obtain A, and A,

L+3ZM =0 500(3.5) + (2)Ng(4) + (2)Np(10) =0 Ans
1331.51b = 1.33k

== 3F =) 4 . . 1.07k Ans

+12F, =0 y =270k Ans




The compound beam in Fig. 2-31a is fixed at A. Determine the
reactions at A, B, and C. Assume that the connection at B is a pin
and Cis a roller.

Eﬂ?ﬁﬁh-rﬂ— 600(»_1%&

cC &
3Of"“—-~*—-15ft-_-_|

(a)

A

Fig. 2-31

SOLUTION

Free-Body Diagrams. The free-body diagram of each segment is
shown in Fig. 2-315. Why is this problem statically determinate?

8000 Ib

B, |
— —’I |
f
..

v 4

L B 1 }60()1] Ib-ft
C

B




Equations of Equilibrium. There are six unknowns. Applying the six
equations of equilibrium, using previously calculated results, we have

Segment BC:

L+EM- =1
+1ZF, =0
BKIF, =0

Segment AB:
LHEM,=10;

—6000 + B,(15) =0 B, =4001b
—400 + C, =0 C, = 400 1b
B,=0

M 4 — 8000(10) + 400(20) = 0
My =T20k-ft

A, — 8000 + 400 = 0

A, —0=0




Determine the horizontal and vertical components of reaction at the
pins A, B, and C of the two-member frame shown in Fig. 2324,

R kN J kN Jm

I T T e

+

L m




SOLUTION

Free-Body Diagrams. The free-body diagram of each member is
shown in Fig. 2-32b.

Equations of Equilibrium. Applying the six equations of equilibrium
in the following sequence allows a direct solution for each of the six
unknowns.

Member BC:
VHEM-=0;
Member AB:
L+EZEM, =0
L EF, =0
+T}ZF_,,. =1k
Member BC:

S IF,. =0; 14 ; . 14.7T kN
+12F,=0; 3—-6+C, = 3kN




EXAMPLE [2.13

The side of the building in Fig. 2-334 is subjected to a wind loading that
creates a uniform normal pressure of 15 kPa on the windward side
and a suction pressure of 5 kPa on the leeward side. Determine the
horizontal and vertical components of reaction at the pin connections
A, B, and C of the supporting gable arch.




SOLUTION
Since the loading is evenly distributed, the central gable arch supports

a loading acting on the walls and roof of the dark-shaded tributary
area. This represents a uniform distributed load of (15 kN/m?)
(4m) = 60kN/m on the windward side and (5 I{Hfﬂlzj[-ﬁl m) =

20 kN/m on the leeward side, Fig. 2-33b.




Free-Body Diagrams. Simplifying the distributed loadings, the free-
body diagrams of the entire frame and each of its parts are shown in
Fig. 2-33c.
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Equations of Equilibrium. Simultaneous solution of equations is
avoided by applying the equilibrium equations in the following
sequence using previously computed results.®

Entire Frame;

LHEM,=0; —(180 + 60)(1.5) — (254.6 + B4.9) cos 45°(4.5)
— (254.65in45°)(1.5) + (84.9 5in 45°)(4.5) + C,(6) = 0
C, = 2400 kN Ans.
+13F, =0; —A, — 254.65in45° + 84.95in 45° + 240.0 = 0

A, = 1200 kN Ans

Zpe 840 kN
B, ally
b 60KN
—
f 3
'I'I.T




Member AB:
L+HEMp =0 —A(6) + 120.0(3) + 1BD(45) + 254.6(212) =0
A, = 285.0kN Anx

B EF, =0 —285.0 + 180 + 254.6cos45° — B, = 0
B, = 75.0 kN

+1EF, =0, —120.0 — 254.65in45° + B, =0
B, = 300.0 kN

Member CB:

HEF, =0 —C,+ 60 + 849 cos45° + 750=10
C. = 195.0kN Ans.

*The problem can also be solved by applying the six equations of equilibrium only to
the two members. If this is done. it is best to first sum moments about point A on
member AR, then point C on member CB. By doing this, one obtains two equations to

be solved simultaneously for B, and B,.




Analysis of Statically 3
Determinate Trusses




3.1 Common Types of Trusses

A rtruss 1s a structure composed of slender members joined together at
their end points. The members commonly used in construction consist
of wooden struts, metal bars, angles, or channels. The joint connections
are usually formed by bolting or welding the ends of the members to a
common plate, called a gusset plate, as shown in Fig. 3-1, or by simply
passing a large bolt or pin through each of the members. Planar trusses
lie in a single plane and are often used to support roofs and bridges.

gusset plate

Fig. 3-1

The gusset plate is used to connect eight
members of the truss supporting structure
for a water tank.



Roof Trusses. Roof trusses are often used as part of an industrial building frame, such as
the one shown in Fig. 3-2. Here, the roof load is transmitted to the truss at the joints by
means of a series of purlins. The roof truss along with its supporting columns is termed a
bent.

purlins

top cord

e o

Although more decorative than structural,
these simple Pratt trusses are used for the
entrance of a building.




Bridge Trusses. The main structural elements of a typical bridge
truss are shown in Fig. 3—4. Here 1t 1s seen that a load on the deck 1s first
transmitted to stringers, then to floor beams, and finally to the joints of the
two supporting side trusses. The top and bottom cords of these side trusses
are connected by top and bottom lateral bracing, which serves to resist the
lateral forces caused by wind and the sidesway caused by moving vehicles
on the bndge. Additional stability 18 provided by the portal and sway
bracing. As 1 the case of many long-span trusses, a roller 1s provided at
one end of a bridge truss to allow for thermal expansion.

top cord

top
lateral
bracing

portal
bracing

stringers _



3.2 Classification of Coplanar Trusses

Before beginming the force analysis of a truss, 1t 18 1important to classify
the truss as simple, compound, or complex, and then to be able to specily
its determinacy and stability.

Simpie Truss. To prevent collapse, the framework of a truss must be

rigid. Obviously, the four-bar frame ABCD in Fig. 3=7 will collapse unless a Fig. 3-7
diagonal, such as AC, 1s added for support. The simplest framework that 1s

rigid or stable 1s a friangle. Consequently, a simple fruss 15 constructed by i ol
starting with a basic triangular element, such as ABC m hig. 3-8, and ) s
connecting two members (AD and BD) to form an additional element. ) ~@ B

Thus 1t 15 seen that as each additional element of two members 1s placed X
on the truss, the number of joints 15 increased by one. '

Fig. 3-8



CDi‘T}p ound Truss. A compound truss is formed by connecting two
or more simple trusses together. Quite often this type of truss 1s used to
support loads acting over a large span, since 1t 1s cheaper to construct a
somewhat hghter compound truss than to use a heavier single simple truss.

Complex Truss. A complex rruss is one that cannot be classified as
being either simple or compound. The truss in Fig. 3-12 15 an example.



simple
Lrusses

(a) (b)

Complex truss

Fig. 3-12

(c)

Various types of compound trusses

Fig. 3-11



Determinacy. For any problem in truss analysis, it should be realized
that the total number of unknowns includes the forces in b number of
bars of the truss and the total number of external support reactions r.
Since the truss members are all straight axial force members lying 1n the
same plane, the force system acting at each joint 1s coplanar and concurrent.
Conseguently, rotational or moment equilibrium 1s automatically satished
at the joint (or pin), and it 18 only necessary to satisfy £F, = (} and
2 Fy = 0 to ensure translational or force equilibrium. Therefore, only two
equations of equihbrium can be wnitten for each jomnt, and if there are
number of joints, the total number of equations available for solution 1s 2;.
By simply comparing the total number of unknowns (b + r) with the total
number of available equilibrium equations, 1t 15 therefore possible to
specify the determinacy for either a simple, compound, or complex truss.
We have

b+r=2j statically determinate

(3-1)

b+r>2 statically indeterminate

In particular, the degree of indeterminacy 1s specified by the difference 1n
the numbers (b + r) — 2j.



Stability. If b+ r < 2j, a truss will be unstable, that is, it will
collapse, since there will be an insufficient number of bars or reactions to
constrain all the joints. Also, a truss can be unstable if it 1s statically
determinate or statically indeterminate. In this case the stability will
have to be determined either by inspection or by a force analysis.

External Stability. As stated in Sec. 2-4, a structure (or truss) is
externally unstable if all of its reactions are concurrent or parallel. For
example, the two trusses in Fig. 3-13 are externally unstable since the
support reactions have lines of action that are either concurrent or

parallel.

unstable concurrent reactions unstable parallel reactions

Fig. 3-13



Internal Stability. The internal stability of a truss can often be
checked by careful inspection of the arrangement of its members. If it
can be determined that each joint is held fixed so that it cannot move in
a “rigid body” sense with respect to the other joints, then the truss will be
stable. Notice that a simple truss will always be internally stable, since by
the nature of its construction it requires starting from a basic triangular
element and adding successive “rigid elements,” each containing two
additional members and a joint. The truss in Fig. 3-14 exemplifies this
construction, where, starting with the shaded triangle element ABC, the
successive joints D, E, F, G, H have been added.

If a truss is constructed so that it does not hold its joints in a fixed
position, it will be unstable or have a “critical form.” An obvious example
of this is shown in Fig. 3-15, where it can be seen that no restraint or
fixity is provided between joints C and F or B and E, and so the truss
will collapse under load.

I d . : G




If the truss has b bars, r external reactions, and j joints, then if:

b+ r<1f
b+r=12

unstable

unsiable if truss suppori reactions
are concurrenl or parallel or if
some of the components of the
truss [orm a collapsible mechanism

(3-2)

Bear in mind, however, that if a truss Is unstable, it does not
matter whether it Is statically determinate or indeterminate.
Obviously, the use of an unstable truss is to be avoided in practice.



Classify each of the trusses in Fig. 3-18 as stable, unstable, statically
determinate, or statically indeterminate. The trusses are subjected to
arbitrary external loadings that are assumed to be known and can act
anywhere on the trusses.

SOLUTION

Fig. 3-18a. Externally stable, since the reactions are not concurrent
or parallel. Since b = 19, r =3, j= 11, then b + r = 2j or 22 = 22.
Therefore, the truss is statically determinate. By inspection the truss is
internally stable.

Fig. 3-18




Fig. 3-18b. Externally stable. Since b =15, r=4, j = 9, then
b + r = 2jor 19 > 18.The truss is statically indeterminate to the first
degree. By inspection the truss is internally stable.




Fig. 3-18c.

Externally stable. Since b =9, r =3, j =6, then

b+ r = 2jor 12 = 12. The truss is statically determinate. By inspection
the truss is infernally stable.




Fig. 3-18d. Externally stable. Since b = 12, r = 3, j = 8, then
b+ r << 2jor 15 < 16. The truss 1s mternally unstable.




3.3 The Method of Joints

The following procedure provides a means for analyzing a truss
using the method of joints.

® Draw the free-body diagram of a joint having at least one known
force and at most two unknown forces. (If this joint is at one of
the supports, it may be necessary to calculate the external
reactions at the supports by drawing a free-body diagram of the
entire truss.)

® Use one of the two methods previously described for establishing |
the sense of an unknown force. ! '

® The x and v axes should be oriented such that the forces on the B
free-body diagram can be easily resolved into their x and v — 500 N
components. Apply the two force equilibrium equations =F, = 0 P\
and XF = 0, solve for the two unknown member forces. and = s (compression)
verify their correct directional sense. Fz. (lension)

® Continue to analyze each of the other joints, where again it is (b)
necessary to choose a joint having at most two unknowns and at
least one known force.

B
® Once the force in a member is found from the analysis of a joint at FEED
one of its ends, the result can be used to analyze the forces acting
on the joint at its other end. Remember, a member in compression ], 455
*pushes” on the joint and a member in tension “pulls”™ on the joint. Fic (compression)

F , (tension)




EXAMPLE (3.2

Determine the force in each member of the roof truss shown in the
photo. The dimensions and loadings are shown in Fig. 3-20a. State
whether the members are in tension or compression.

2kN

y SOLUTION
‘ :I;['}f Only the forces in half the members have to be determined, since the
As —x truss is symmetric with respect to both loading and geometry.
F..-l.ﬂ‘
4IN Joint A, Fig. 3-20b. We can start the analysis at joint A. Why? The
(b) free-body diagram is shown in Fig. 3-205b.

+15F,=0; 4- Fusin30°=0 Fu; =8kN(C) Ans.
HKIF =0; Fup— 8cos30° = Fip = 6.928kN (T) Ans




Joint G, Fig. 3-20¢. In this case note how the orientation of the x,
y axes avoids simultaneous solution of equations.

+NZF, =0; Fgpsin60° — 3cos30° =0

Fgep = 3.00kN (C) Ans,
+/72F,=0; 8 —3sin30° —3.00cos 60 — Fr =10
Fsr = 5.00kN (C) Ans.
y
E,, Joint B, Fig. 3-20d.
3"’&1 - +1SF,=0; Fgpsin60° — 3.00sin30° = 0
30y »
- al, - - g — / -
6.928 kN B Fgc x FBF 173 kN (T) ,lll.\.
(d) L 3IF,=0: Fpe + 1.73 cos 60° + 3.00 cos 30° — 6.928 = 0

Fig. 3-20 Fpe = 3.46 kN (T) Ans,



EXAMPLE |3.3

Determine the force in each member of the scissors truss shown in
Fig. 3-21a. State whether the members are in tension or compression.
The reactions at the supports are given.

SOLUTION
The truss will be analyzed in the following sequence:

Joint E, Fig. 3-21b. Note that simultaneous solution of equations is

avoided by the x, y axes orientation. A = 12541b A E - 19101
+ALEF; = 191.0 cos 30° — Fgpsin 15° =0

Fgp=639.11b(C) Ans.
+NEF, = 0O; 639.1 cos15° — Fgr — 191.0sm 30° = 0

Frr=152181b(T) Ans.

Joint D, Fig. 3-21c.

FED X
+£ZF; = B; —Fprpsin13" =10 Fprp=10 Ans. Fer / N Foc
£ ?{
639.1 1b

+N\ZF, =0; —Fpc+6391=0 Fp-=63911b(C) Ans 15° /A Fﬂl'

lmlemd ™ Elex = &a4.4



Joint C, Fig. 3-21d.

XIF,. =0; Fepsindy® — 639.1s5in45° =0
Fep = 639.11b(C)

+T2F, =0, —Fcp— 175 + 2(639.1) cos 45° = 0
Fep = 72881b (T)

Joint B, Fig. 3-21e.

+NZF, =0 Fppsin75° — 200 =0 Fpp=207.11b(C)

+/2ZF, = 0; 639.1 + 207.1cos 75" — Fgy =0
Fga=1692.71b (C)

Joint A, Fig. 3-21f.
EIF, =0 Furcos30° — 6927 cos45° — 1414 =0
Far = 72891b(T)

+1ZF, =0; 1254 — 692.7 sin 45° + 7289 5in30° = 0

Notice that since the reactions have been calculated, a further check
of the calculations can be made by analyzing the last joint F. Try it and

find out.

.‘"\ [JAY

Ans.

Ans.

."{ ’ I.\.

Ans.

check

(b) (c)

v
X 639.11b
200 1b /
B T5°

FBF

.\'/ BA

(e)

697 7 lb
1414 1b <
175 41b

(f)
Fig. 3-21




3.4 Zero-Force Members

Truss analysis using the method of joints is greatly simplified if one is
able to first determine those members that support no loading. These
zero-force members may be necessary for the stability of the truss during
construction and to provide support if the applied loading is changed.
The zero-force members of a truss can generally be determined by
inspection of the joints, and they occur in two cases.

Case 1. Consider the truss in Fig. 3-22a4. The two members at joint C
are connected together at a right angle and there is no external load on
the joint. The free-body diagram of joint C, Fig. 3-22b, indicates that the
force in each member must be zero in order to maintain equilibrium.
Furthermore, as in the case of joint A, Fig. 3-22¢, this must be true
regardless of the angle, say #, between the members.




Case 2. Zero-force members also occur at joints having a geometry as
joint D in Fig. 3-23a. Here no external load acts on the joint, so that a
force summation in the vy direction, Fig. 3-23b, which 1s perpendicular to
the two collinear members, requires that Fpp = 0. Using this result, FC

1s also a zero-force member, as indicated by the force analysis of joint F,
Fig. 3-23c.

For
For F.:
D F,, "

7N i

(c)
(b) TP 1
+4+ ZF, =0, Fepsin + 0 =10

teEF, =0 Fpr=10 Fer = (since sin # # 0)

Fig. 3-23



3.5 The Method of Sections

(c)

Fig. 3-25



Procedure for Analysis

The following procedure provides a means for applying the method
of sections to determine the forces in the members of a truss.

Free-Body Diagram

® Make a decision as to how lo “cul” or section the truss through
the members where forces are to be determined.

® Before isolating the appropriate section, it may first be necessary
to determine the truss’s external reactions, so that the three
equilibrium equations are used only to solve for member forces
at the cut section.

® Draw the free-body diagram of that part of the sectioned truss
which has the least number of forces on it.

®* Use one of the two methods described above for establishing the
sense of an unknown force.

Equations of Equilibrium

® Moments should be summed about a point that lies at the intersection
of the lines of action of two unknown forces; in this way, the third
unknown force is determined directly from the equation.

® If two of the unknown forces are parallel, forces may be summed
perpendicular to the direction of these unknowns to determine
directly the third unknown force.




Determine the force in members GJ and CO of the roof truss shown
in the photo. The dimensions and loadings are shown in Fig. 3-26a.
State whether the members are in tension or compression. The
reactions at the supports have been calculated.

500 Ib

150 1b




SOLUTION
Member CF.

Free-Body Diagram. The force in member GJ can be obtained by
considering the section aa in Fig. 3-26a. The free-body diagram of the
right part of this section is shown in Fig. 3-26b.

Equations of Equilibrium. A direct solution for Fg; can be
obtained by applying ZM; = 0. Why? For simplicity, slide Fg; to
point G (principle of transmissibility), Fig. 3-265. Thus,

L‘l‘EMI = 0 —FGJ sin 300(6) 3 3(X)(3464) =:{)
Fgy = 3461b (C) Ans.

Member GC.

Free-Body Diagram. The force in CO can be obtained by using
section bb in Fig. 3-26a. The free-body diagram of the left portion of
the section is shown in Fig. 3-26c.

Equations of Equilibrium. Moments will be summed about point A
in order to eliminate the unknowns Fp and F,.

(+ZM 4 = 0; —300(3.464) + Fp(6) =0
Fco=1731b(T) Ans.

1159.3 b




EXAMPLE [3.6

Determine the force in members GF and GD of the truss shown in
Fig. 3-27a. State whether the members are in tension or compression,
The reactions at the supports have been calculated.




SOLUTION

Free-Body Diagram. Section aa in Fig. 3-27a will be considered. Why?
The free-body diagram to the right of this section is shown in Fig. 3-275.
The distance EO can be determined by proportional triangles or
realizing that member GF drops vertically 4.5 — 3 = 1.5min3m,
Fig. 3-27a. Hence to drop 4.5 m from G the distance from C to O must
be 9 m. Also, the angles that F;p and Fir make with the horizontal are
tan~'(4.5/3) = 56.3° and tan"'(4.5/9) = 26.6°. respectively.

Equations of Equilibrium. The force in GF can be determined
directly by applying ZMp = 0. Why? For the calculation use the
principle of transmissibility and slide Fgr to point O. Thus,

(+ZMp = 0; —FGrsin 26.6°(6) + 7(3) = 0
Fgr = 783 kN (C) Ans.

The force in GD is determined directly by applying 2Mgy = 0. For
simplicity use the principle of transmissibility and slide Fgp to D.
Hence,

(+ZMg = 0 =7(3) + 2(6) + Fgpsin 56.3°(6) = 0
Fgp = 1.80kN (C) Ans.




EXAMPLE (3.7

Determine the force in members BC and MC of the K-truss shown in
Fig. 3-28a. State whether the members are in tension or compression.
The reactions at the supports have been calculated.

LY K J 1 H

15 ft 15 ft=-15 ft == 15 ft =15 ft = 15 ft
\J \J \J

A,=29001b 120016 15001b 1800 1b G. = 1600 1b

(a)
SOLUTION
Free-Body Diagram. Although section aa shown in Fig. 3-28a cuts
through four members. it is possible to solve for the force in member
BC using this section. The free-body diagram of the left portion of the
truss is shown in Fig. 3-28b.

Equations of Equilibrium. Summing moments about point L
eliminates three of the unknowns,. so that

(+SMp =0, —2900(15) + Fpc(20) = 0
FBC =21751b (T) Ans. (b)

2900 1b 1200 1b




Free-Body Diagrams. The force in MC can be obtained indirectly
by first obtaining the force in MB from vertical force equilibrium of
joint B, Fig. 3-28¢, i.e.. Fyp = 1200 1b (T). Then from the free-body
diagram in Fig. 3-28b.

+T2F.\, =0 2900 — 1200 + 1200 — Fy; = 0
Faypr = 29001b (T)

Using these results, the free-body diagram of joint M is shown in
Fig. 3-28d.

Equations of Equilibrium.

3
i) EF\ =0 (L)F"( i (—)FMK =1

V13 13
2 2
+TEF_\- = (; 2900 — 1200 — (W—:;‘)FMC - ('\_/_‘1—3>FMK =0
FMK = 1532 1b (C) F;WC' = 1532 1b (T) Ans.

Sometimes, as in this example, application of both the method of sections
and the method of joints leads to the most direct solution to the problem.

[t is also possible to solve for the force in MC by using the result for
Fpc. In this case, pass a vertical section through LK, MK, MC, and BC,
Fig. 3-28a. Isolate the left section and apply Mg = 0.

29001b 4 Fuu
: 2
M
Y
1200 1b Fie
(d)
Fig. 3-28




3.6 Compound Trusses

In Sec. 3-2 1t was stated that compound trusses are formed by connecting
two or more simple trusses together either by bars or by joints.
Occasionally this type of truss 1s best analyzed by applving both the
method of joints and the method of sections. It i1s often convenient to
first recognize the type of construction as listed in Sec. 3-2 and then
perform the analysis using the following procedure.



EXAMPLE ja.s

Indicate how to analyze the compound truss shown in Fig. 3-29a. The
reactions at the supports have been calculated.

SOLUTION
The truss is a compound truss since the simple trusses ACH and CEG
are connected by the pin at C and the bar HG.

Section aa in Fig. 3-29a cuts through bar HG and two other members
having unknown forces. A free-body diagram for the left part is shown
in Fig. 3-29b. The force in HG is determined as follows:

I XA — N /AN 1 AMNY DD (A cia £NCY — N



O REN =5 KM
(b}
H
) . 3.46 kN
F 9
A o
|i.-_-'}’/) .'."'l.l"l.l.
h?i_' b, {
it i_.-‘_i- i Fl..h
S N & O
A ‘_.-'___":-'Il'r. l"""-.l:"*_ _.-":-:"'r. '.L"'
w-
T B €  Fep
SkN 4 kN kN

L LZM- =0 —5(4) + 4(2) £ F,(4sin60°) = 0
F,. = 346 kN (C)

We can now proceed to determine the force in each member of the
simple trusses using the method of joints. For example, the free-body
diagram of ACH is shown in Fig. 3-29¢. The joints of this truss can be
analyzed in the following sequence:

Joine A: Determine the force in AR and A/l
Joint H: Determine the force in HF and HJ.
Joint I: Determine the force in /F and IB.
Joine B: Determine the force in BC and BJ.
Joint J: Determine the force in JC.




EXAMPLE |3.9

Compound roof trusses are used in a garden center, as shown in the
photo. They have the dimensions and loading shown in Fig. 3-30a.
Indicate how to analyze this truss.

1o kN

ImimIimIim1lm Im
(b)
F’ig.i—.“l




SOLUTION
We can obtain the force in EF by using section aa in Fig. 3-30a. The

free-body diagram of the right segment is shown in Fig. 3-305

(+=Mg = 0; —1(1) — 1(2) — 1(3) — 1{4) — 1(5) — 0.5(6) + 6(6) — Fp(6tan30°) = 0
Frp = S20kN (T) Ans.

By inspection notice that BY, EO, and HJ are zero-force members
since + | £F, = Oat joints B, E, and H. respectively. Also, by applying
+~EZF, = 0 (perpendicular to AQ) at joints P, ¢, 5, and T, we can
directly determine the force in members PU, QU, SC. and TC.
respectively.




EXAMPLE (3.10

Indicate how to analyze the compound truss shown in Fig. 3-31a. The
reactions at the supports have been calculated.

SOLUTION
The truss may be classified as a type 2 compound truss since the
simple trusses ABCD and FEHG are connected by three nonparallel
or nonconcurrent bars, namely, CE, BH, and DG.

Using section aa in Fig. 3-31a we can determine the force in each
connecting bar. The free-body diagram of the left part of this section is
shown in Fig. 3-315. Hence,

(+EZM; =0 —3(6) — F,,(6sin45%) + F-pcos45°(12)

+ Fopsin 45°(6) = 0 (1)
+13F, =0: 3—3— Fy,sind5" + Fopsind5° =0 (2)
BIF, =0; —Fpucosd5 + Fpe — Fepcosd5® =0 (3)




From Eq.(2). F3;; = Fo g then solving Egs. (1) and (3) simultaneously
vields
Fyy = Fep = 268k (C) Foe=378k(T)
Analvsis of each connected simple truss can now be performed

using the method of joints. For example, from Fig. 3-31c. this can be
done in the following sequence.

Joint A: Determine the force in AB and AD.
Joine D; Determine the force in DC and DB.
Joine C: Determine the force in CB.




3.7 Complex Trusses

The member forces in a complex truss can be determined using the
method of joints; however, the solution will require writing the two
equilibrium equations for each of the j joints of the truss and then
solving the complete set of 2 equations simultaneously.® This approach
may be impractical for hand calculations, especially in the case of large
trusses. Therefore, a more direct method for analyzing a complex truss,
referred to as the methoed of substitute members, will be presented here.



Procedure for Analysis

With reference to the truss in Fig. 3-32a, the following steps are
necessary to solve for the member forces using the substitole-
member method.

Fig. 132




Reduction to Stable Simple Truss

Determune the reactions at the supports and begin by imagining how
to analyze the truss by the method of joints, i.e., progressing from
joint to joint and solving for each member force. If a joint 1s reached
where there are three unknowns, remove one of the members at the
joint and replace it by an imaginary member elsewhere in the truss
By doing this, reconstruct the truss to be a stable simple truss.

For example. in Fig. 3-32a it is observed that each joint will have
three unknown member forces acting on it. Hence we will remove
member AD and replace it with the imaginary member EC,
Fig. 3-32b. This truss can now be analyzed by the method of joints
for the two types of loading that follow.

External Loading on Simple Truss

Load the simple truss with the actual loading P, then determine the
force 8] in each member i. In Fig. 3-32b, provided the reactions
have been determined. one could start at joint A to determine the
forces in AB and AF, then joint F to determine the forces in FE
and FC, then joint I to determine the forces in DE and DC (both
of which are zero), then joint E to determine EB and EC, and

finally joint B to determine the force in BC.




Remove External Loading from Simple Truss

Consider the simple truss without the external load P. Place equal
but opposite collinear unit loads on the truss at the two joints from
which the member was removed. If these forces develop a force 5; in
the ith truss member, then by proportion an unknown force x in the
removed member would exert a force xs; in the ith member.

From Fig. 3-32¢ the equal but opposite unit loads will create no
reactions at A and C when the equations of equilibrium are applied
to the entire truss. The s; forces can be determined by analyzing the
joints in the same sequence as before, namely, joint A. then joints F,
D, E., and finally B.

Superposition
If the effects of the above two loadings are combined, the force in
the ith member of the truss will be

S; = 8! + xs; (1)

In particular, for the substituted member EC in Fig. 3-32b the
force Sgc = Sge + x5pc. Since member EC does not actually exist
on the original truss, we will choose x to have a magnitude such that
it yields zero force in EC. Hence,

SFE'{' = X8p = 0 {E}

or x = —Sgc/Spe. Once the value of x has been determined, the
force in the other members i of the complex truss can be determined

from Eq. (1).




EXAMPLE (3.11

Determine the force in each member of the complex truss shown in
Fig. 3-33a. Assume joints B, F, and D are on the same horizontal line.
State whether the members are in tension or compression.

(a)
Fig. 3-33

SOLUTION

Reduction to Stable Simple Truss. By inspection, each joint has
three unknown member forces. A joint analysis can be performed
by hand if, for example, member CF is removed and member DB
substituted, Fig. 3-33b. The resulting truss is stable and will not collapse.




4375k

(b)

4375k

External Loading on Simple Truss. As shown in Fig. 3-33b, the
support reactions on the truss have been determined. Using the
method of joints, we can first analyze joint C to find the forces in
members CB and CD:; then joint F, where it is seen that F4 and FE
are zero-force members; then joint E to determine the forces in
members EB and ED: then joint D to determine the forces in D4 and
DEB; then finally joint B to determine the force in BA. Considering

tension as positive and compression as negative, these §; forces are
recorded in column 2 of Table 1.




{c)

Remove External Loading from Simple Truss. The unit load
acting on the truss is shown in Fig. 3-33¢. These equal but opposite
forces create no external reactions on the truss. The joint analysis
follows the same sequence as discussed previously, namely, joints C, F,
E. D, and B.The results of the s; force analysis are recorded in column 3

of Table 1.
Superposition. We require

Sﬂg = Sbg + XSpp — ()




Substituting the data for Spp and spg, where Spp 1s negative since the
force is compressive, we have

—2.50 + x(1.167) =0 x = 2.143

The values of xs; are recorded in column 4 of Table 1. and the actual
member forces §; = 5; + x5; are listed in column 3.

TABLE 1

Member S 5; X5 5
CH 354 —0.707 —1.52 2.02 (T)
cD —3.54 —0.707 —1.5 5.05 (C)
FA 0 (.833 1.79 1.79(T)
FE 0 (L8333 1.79 1.79(T)
EB 0 —0.712 —1.53 1.53 (C)
ED —4.38 —{.250 —(0.536 491 (C)
DA 534 —0.712 —1.53 3.81 (T)
DE —2.50 1.167 2.50 0

BA 2.50 —(.250 —0.536 1.96 (T)

CB 2.14 (T)




3.8 Space Trusses

A space truss consists of members joined together at their ends to form
a stable three-dimensional structure. In Sec. 3-2 it was shown that the
simplest form of a stable two-dimensional truss consists of the members
arranged in the form of a triangle. We then built up the simple plane
truss from this basic triangular element by adding two members at a
time to form further elements. In a similar manner, the simplest element
of a stable space truss is a fefrahedron, formed by connecting six members
together with four joints as shown in Fig. 3-34. Any additional members
added to this basic element would be redundant in supporting the force
P. A simple space truss can be built from this basic tetrahedral element
by adding three additional members and another joint forming
multiconnected tetrahedrons.

Fig. 3-34



Determinacy and Stability. Realizing that in three dimensions
there are three equations of equilibrium available for each joint (£ F, = 0,
ZF,=0,ZF, = 0), then for a space truss with j number of joints, 3j
equations are available. If the truss has b number of bars and r number of
reactions, then like the case of a planar truss ( Egs. 31 and 3-2) we can write

b+ r<3f unstable truss
b+r=3j statically determinate —check stability (3-3)
b+r>=3j statically indeterminate —check stability

The external stability of the space truss requires that the support
reactions keep the truss in force and moment equilibrium about any and
all axes. This can sometimes be checked by inspection, although if the truss
1s unstable a solution of the equilibrium equations will give inconsistent
results. fnternal stability can sometimes be checked by careful inspection
of the member arrangement. Provided each joint 1s held fixed by its
supports or connecting members, so that it cannot move with respect to
the other joints, the truss can be classified as internally stable. Also, if we
do a force analysis of the truss and obtain inconsistent results, then the
truss configuration will be unstable or have a “critical form.”



The roof of this pavilion is supported using
a syslem of space lrusses,

Assumptions for Design. The members of a space truss may be
treated as axial-force members provided the external loading is applied
at the joints and the joints consist of ball-and-socket connections. This
assumption is justified provided the joined members at a connection
intersect at a common point and the weight of the members can be
neglected. In cases where the weight of a member is to be included in the
analysis, it 1s generally satisfactory to apply it as a vertical force, half of its
magnitude applied to each end of the member.

For the force analysis the supports of a space truss are generally
modeled as a short link, plane roller joint, slotted roller joint, or a
ball-and-socket joint. Each of these supports and their reactive force
components are shown in Table 3-1.



TABLE 3-1 Supports and Their Reactive Force Components

(1)

shiori link

(2)

roller

3
@) i .
¥ \'ﬁ'
x /
x F__
slotted roller constrained :
in a eylinder

(4)

Z Z

bal-and-socket




z X, ¥, 2, Force Components. Since the analysis of a space truss is
three-dimensional, it will often be necessary to resolve the force F in a
member into components acting along the x, y, z axes. For example, in
Fig. 3-35 member AB has a length [ and known projections x, y, 7 along
the coordinate axes. These projections can be related to the member’s
length by the equation

I=VZ2+y+2 (3-4)

Since the force F acts along the axis of the member, then the
components of F can be determined by proportion as follows:

_plX = w2y _rl 2
FI—F(f) F, F(f) E. F(f) (3-5)




Because of their cost effectiveness, lowers
such as these are ofien used Lo support
multiple electric transmission lines,

Notice that this requires

F=NP PR (3-6)
Use of these equations will be illustrated in Example 3-12.

Zero-Force Members. In some cases the joint analysis of a truss
can be simplified if one is able to spot the zero-force members by
recognizing two common cases of joint geometry.

Case 1. If all but one of the members connected to a joint lie in the same
plane, and provided no external load acts on the joint, then the member
not lying in the plane of the other members must be subjected to zero
force. The proof of this statement is shown in Fig. 3-36, where members
A, B, C lie in the x—y plane. Since the 7z component of Fp must be zero to
satisfy £ F, = (, member D must be a zero-force member. By the same
reasoning, member D will carry a load that can be determined from
ZF. = 01if an external force acts on the joint and has a component acting
along the z axis.




Case 2. If it has been determined that all but two of several members
connected at a joint support zero force, then the two remaining members
must also support zero force, provided they do not lie along the same line.
This situation is illustrated in Fig. 3-37, where it is known that A and C are
zero-force members. Since Fp is collinear with the y axis, then application
of ZF, = 0or ZF_ = 0 requires the x or 7 component of Fj to be zero.
Consequently, Fp = 0. This being the case, Fp = Osince ZF, = 0.

Fal
i

Fqa=10 Fig. 3-37

Particular attention should be directed to the foregoing two cases of
joint geometry and loading. since the analysis of a space truss can be
considerably simplified by first spotting the zero-force members.



Procedure for Analysis

Either the method of sections or the method of joints can be used to
determine the forces developed in the members of a space truss.

Method of Sections

If only a few member forces are to be determined, the method of
sections may be used. When an imaginary section is passed through a
Lruss and the truss is separated into two parts, the force system acting on
either one of the parts must satisfy the six scalar equilibrium equations:

EF, =0, Z2F, =0, ZF . =0, ZM, =0, ZM, =0, M. = 0. By
proper choice {.'lf the section and axes for summing forces and ﬂlﬂtﬂEﬂl’E.
many of the unknown member forces in a space truss can be computed
directly. using a single equilibrium equation. In this regard. recall that
the moment of a force about an axis is Zero provided the force is parallel
to the axis or its line of action passes through a point on the axis.

Method of Joints

Generally, if the forces in all the members of the truss must be
determined, the method of joints is most suitable for the analysis.
When using the method of joints. it is necessary to solve the three
scalar equilibrium equations £F, =0, £F, = 0, £F_ = 0 at each
joint. Since it is relatively easy to draw the free-body diagrams and
apply the equations of equilibrium, the method of joints is very
consistent in its application.




EXAMPLE |3.12

Determine the force in each member of the space truss shown in
Fig. 3-38a. The truss is supported by a ball-and-socket joint at A, a
slotted roller joint at B, and a cable at C.

(a) (b}
Fig. 3-38




SOLUTION
The truss is statically determinate since b + r = 3jor 9 + 6 = 3(5).
Fig. 3-38b.

Support Reactions. We can obtain the support reactions from the
free-body diagram of the entire truss, Fig. 3-38b, as follows:

EM,=0; —600(4)+ B8 =0  B,=3001b

=M, = 0; £,=10
SM, = 0; B,(8) —600(8) =0 B, =600lb
3F, =0 00— A,=0 A, =300Ib
IF, = O A, —600=0 A, =6001b

SF. =0 A.—600=0 A, =6001b




L
30 b
.-""ff Fus 4
I FEJ

(c)

Joint B. We can begin the method of joints at B since there are three
unknown member forces at this joint, Fig. 3-38c. The components of

Fpr can be determined by proportion to the length of member BE, as
indicated by Eqs. 3-5. We have

IF,=0; —600+ Fge(3) =0  Fgg=9001b(T) Ans
IF,=0; 300 — Fge — 900(3%) = Fpe=0 Ans
EE. =0 Fyy— mﬂ{%] =0  Fg,=6001b(C) Ans

[ ]




Joint A. Using the result for Fgy = 6001b (C),
diagram of joint A is shown in Fig. 3-384. We have

the free-body

SF, = 600 — 600 + F 4-sin 457 = 0
Fac =10 Ans.
xR =0 —F4plZ) + 600 =0
Fp = 67081b (C) Ans
SF, =0 ~300 + Fup + 6708(%) = 0

Fiap=10 Ans

Joint D. By inspection the members at joint D, Fig. 3-384. support
zero force, since the arrangement of the members is similar to either

of the two cases discussed in reference to Figs. 3-36 and 3-37. Also,
from Fig. 3-38e,

SF, = 0;
SF,. =0

F_DE:D
Fﬂfzﬂ

Ans,

Ans.
Joint C. By observation of the free-body diagram, Fig. 3-38f,

FCI': — ﬂ Ans.

Fﬂlf
I
U 3 ~y
£ &= Fpe
(e)
[
fﬂ% ¥
3 ' :




EXAMPLE \3.13

Determine the zero-force members of the truss shown in Fig. 3-39a.
The supports exert components of reaction on the truss as shown.

Fig. 3-39

SOLUTION
The free-body diagram. Fig. 3-394. indicates there are eight unknown
reactions for which only six equations of equilibrium are available for
solution. Although this is the case, the reactions can be determined,
since b + r = 3jor 16 + 8 = 3(8).

-



To spot the zero-force members, we must compare the conditions of
joint geometry and loading to those of Figs. 3-36 and 3-37. Consider
joint F, Fig. 3-39b. Since members FC, FD, FE lie in the x'—y’ plane
and FG is not in this plane, FG is a zero-force member. (2F. =0
must be satisfied.) In the same manner, from joint E. Fig. 3-39¢, EF is
a zero-force member, since it does not lie in the y"-z" plane. (£F » = 0
must be satisfied.) Returning to joint F, Fig. 3-395. it can be seen that
Frp= Fpc =0, since Fpr = Fpg = 0, and there are no external
forces acting on the joint. Use this procedure to show that AB is a
zero force member.

The numerical force analysis of the joints can now proceed by
analyzing joint & ( Fgr = 0) to determine the forces in GH, GB, GC.
Then analyze joint H to determine the forces in HE, HB, HA: joint E
to determine the forces in EA, ED: joint A to determine the forces in
AB, AD, and A_: joint B to determine the force in BC and B,, B_:
joint D to determine the force in D C and D, D_; and finally, joint C to
determine C,, C,, C..




Internal Loadings
Developed in 4

Structural Members




The internal load at a specified point in a member can
be determined by using the method of sections. In
general, this loading for a coplanar structure will
consist of a normal force N, shear force V, and
bending moment M.

. Before presenting a method for
finding the internal normal force, shear force, and
bending moment, we will need to establish a sign
convention to aefine their “positive” and “negative”
values.

<

N



Procedure for Analysis

The following procedure provides a means for applying the method
of sections to determine the internal normal force, shear force, and
bending moment at a specific location in a structural member.

Support Reactions

®* Before the member is “cut”™ or sectioned, it may be necessary to
determine the member’s support reactions so that the equilibrium

equations are used only to solve for the internal loadings when
the member is sectioned.

® [f the member 15 part of a pin-connected structure, the pin
reactions can be determined using the methods of Sec. 2-5.




Free-Body Diagram

¢ Keep all distributed loadings, couple moments, and forces acting
on the member in their exact location, then pass an imaginary
section through the member, perpendicular to its axis at the point
where the internal loading is to be determined.

® After the section 18 made, draw a free-body diagram of the
segment that has the least number of loads on it. At the section
indicate the unknown resultants N, ¥V, and M acting in their
positive directions (Fig. 4-la).

Equations of Equilibrium

* Moments should be summed at the section about axes that pass
through the centroid of the members cross-sectional area. in
order to eliminate the unknowns N and V and thereby obtain a
direct solution for M.

¢ If the solution of the equilibrium equations yields a quantity
having a negative magnitude, the assumed directional sense of
the quantity is opposite to that shown on the free-body diagram.




EXAMPLE 4.1

The building roof shown in the photo has a weight of 1.8 kN/m” and is
supported on 8-m long simply supported beams that are spaced 1 m
apart. Each beam, shown in Fig. 4-2b transmits its loading to two
girders, located at the front and back of the building. Determine the
internal shear and moment in the front girder at point C, Fig. 4-2a.
Neglect the weight of the members.

36kN T2kN ~T2kN T2 kN 3.6 kN
|im|im|lm]im|im|]im|im|]ilm]|]im|[im|im|lm]

edge [
beam .

girder=— = +C

H {_ sirder H

A

1.2m | 1.2 m ‘ 12m

432 kN 432 kN
(a)




36kN 72kN -T72kN
lim|]im|

TN
L1

SOLUTION

Support Reactions. The roof loading is transmitted to each beam
as a one-way slab (L;/L; = 8 m/1 m = 8 = 2). The tributary loading
on each interior beam is therefore (1.8 kN/m?*)(1 m) = 1.8 kN/m.
(The two edge beams support (.9 kN/m.) From Fig. 4-2b, the reaction
of each interior beam on the girder is (1.8 kIN/m (8 m),/2 = 7.2 kN.

1.8 kN/m
w L L ¥ ¥ w ¥ L L L | ¥ w w
beam—T
o T AT b
05 m T T_‘| J m
girder — >
T2 kN T2 kN

{b)

Ve Free-Body Diagram. The free-body diagram of the girder is shown
A in Fig. 42q. Notice that each column reaction is
12m [12m [(2(3.6 kN) + 11(7.2kN)]/2 = 43.2kN
A The free-body diagram of the left girder segment is shown in Fig, 4-2c.
(c) Here the internal loadings are assumed to act in their positive directions.
Fig, 4-2 Equations of Equilibrium
+1 ZF =10 43.2 - 36 - 2(72) - V,.=10 Ve=252kN Ans.

(+EMc=0;  Mc+ 72(04) + 72(14) + 3.6(24) — 432(12) =0 Mc=302kN'm  Ans




EXAMPLE (4.2

Determine the internal shear and moment acting at a section passing
through point C in the beam shown in Fig. 4-3a.

27k
-._J--.--'-r
e i
_._.I-‘- |
= !
_— |
e |
-l"-‘--'-‘--.‘ I
.___,.-" i
s Y i
|| 12 f ! 6t ||
9k 18k

(b)
Fig. 4-3




SOLUTION

Support Reactions. Replacing the distributed load by its resultant
force and computing the reactions yields the results shown in Fig. 4-35.

Free-Body Diagram. Segment AC will be considered since it yields
the simplest solution, Fig. 4-3¢. The distributed load intensity at C is
computed by proportion, that is,

we = (6 ft/18 f)(3 k/ft) = 1 k/ft

Equations of Equilibrium.
+1ZF, =0 9-3-Vo=0 Ve =6k Ans
L +EMc=0; —9(6) +3(2)+ Mc=0  Mc=48k-ft Ans

This problem illustrates the importance of keeping the distributed
loading on the beam until affer the beam is sectioned. If the beam in
Fig. 4-3b were sectioned at C, the effect of the distributed load on
seoment AC would not be recognized, and the result V- =9k and
M- = 54 k- it would be wrong.

3k e/
1 ]
a--.-'- | 5
ot I
T -zft-i : Ne
Ve
. 6 ft ——|
9k
(c)




EXAMPLE |4.3

The 9-k force in Fig. 44a is supported by the floor panel DE, which in
turn is simply supported at its ends by floor beams. These beams

transmit their loads to the simply supported girder AB. Determine the
internal shear and moment acting at point C in the girder.

9k




Ok g, —3

28 4 ft—-|
6k Ik
[— - --] =*=
A +
T 3+k 6k
M
B o . ¥ o
f | | J‘ R
12 it 6
! . 12— 4-3 n—| Ve
24 fi I
375k 535k 375k
(b} (c)
SOLUTION

Support Reactions. Equilibrium of the floor panel, floor beams, and
oirder is shown in Fig. 4-4b. It is advisable to check these results.

Free-Body Diagram. The free-body diagram of segment AC of the
girder will be used since it leads to the simplest solution, Fig. 4—4c.
Note that there are no [oads on the floor beams supported by AC.

Equations of Equilibrium.
LEEF, = @; 375 -6 —Ve=20 Ve=—-225k  Ans
(+EMc=0; —3.75(15) + 6(3) + Mc =0 My = 3825k-ft  Ans




4.2 Shear and Moment Functions

Procedure for Analysis

The following procedure provides a method for determining the
variation of shear and moment in a beam as a function of position x.

Support Reactions

¢ Determine the support reactions on the beam and resolve all the
external forces into components acting perpendicular and parallel
to the beam’s axis,

Shear and Moment Functions

* Specily separate coordinates x and associated origins extending into
regions of the beam between concentrated forces and/or couple
moments, or where there is a discontinuity of distributed loading.

* Section the beam perpendicular to its axis at each distance x, and
from the free-body diagram of one of the segments determine the
unknowns V and M at the cut section as functions of x. On the free-
body diagram. V and M should be shown acting in their positive
directions, in accordance with the sign convention given in Fig. 4-1.

* V is obtained from £F, = 0 and M is obtained by summing
moments about the point § located at the cut section, ZMgz = 0.

® The results can be checked by noting that dM/dx =V and
dV /dx = w, where w is positive when it acts upward, away from
the beam. These relationships are developed in Sec. 4-3.

(™| [——

(a)




EXAMPLE | 4.4

Determine the shear and moment in the beam shown in Fig. 4-6a as a
function of x.
2 k/ft

SOLUTION

Support Reactions. For the purpose of computing the support
reactions, the distributed load is replaced by its resultant force of 30 k,
Fip. 4-6b. It is important to remember, however, that this resultant is

not the actual load on the beam.
3k

!
]
-




Shear and Moment Functions. A free-body diagram of the beam
segment of length x is shown in Fig, 4-6¢. Note that the intensity of
the triangular load at the section is found by proportion: that is,
w/x = 2/30 or w = x/15. With the load intensity known, the resultant
of the distributed loading is found in the usual manner as shown in the

figure. Thus,

1{ x | i
+12F, =0, 0-—-(=Jx-V=0 5 (52)=

2\15 X

o=y w=g2k/fl
V =30 — 0.0333x2 Ans N5 e 1
L_l_w;-M = {) ﬁ[ﬂ—qﬂ,l:+|:l(i).l‘]£+ﬂ'f:ﬂ QTﬂ lj
P ) 2X157 13 600 k - fi -l
M = —600 + 30x — 0.0111x° Ans x

Note that dM/dx = V and dV/dx = —x/15 = w, which serves as a (c)

check of the results.




EXAMPLE | 4.5

Determine the shear and moment in the beam shown in Fig. 4-7a as a

function of x.
ﬂ]k dx,

4 k/ff OSY pR
.i.tuuuuu ) mii}i IJ'M
il = |—.‘-l'3-4 | l——n—i|m|[ . 1588 k-ﬂl _If_ffi v

F I [

llftT"l | X,

(4] )

48 k A0 k 45k
108 k _j""""'#““““‘} 4, 108k wb i

I lM
Emm——— | f——— |
1585k~ft! 6 fi ! 1-¢f1—-| 100 k- fi 1388% -

{d}




SOLUTION

Support Reactions. The reactions at the fixed supportare V = 108 k
and M = 1588 k- ft, Fig. 4-7b.

Shear and Moment Functions. Since there is a discontinuity of
distributed load at x = 12 ft, two regions of x must be considered in
order 1o describe the shear and moment functions for the entire
beam. Here x, is appropriate for the left 12 ft and x; can be used for

the remaining segment.

0= x; = 12 ft. Notice that V and M are shown in the positive
directions, Fig. 4-7c.

+12F, =0, 108 —4x;—V =0, V =108 — 4x Ans
[+SMg=0; 1588 — 108x, + 4x, (%) L+ M=0

M = —1588 |- 10Bx; —2x3 Ans.
12 ft = x, = 20 ft, Fig. 4-7d.

+13F,=0; 108-48-V =0, V=60 Ans
[ +EIMg=0; 1588 — 108x, + 48(x, —6) + M =0
M = 60x; — 1300 Ans.

These results can be partially checked by noting that when
x; = 20ft, then V =60k and M = —100k-ft. Also, note that

dM/dx = V and dV /dx = w.




EXAMPLE |4.6

Determine the shear and moment in the beam shown in Fig.4-8a as a
function of x.

90 kN 90kN

Fig. 48

75 kN 105 kN

(b)



SOLUTION

Support Reactions. To determine the support reactions, the
distributed load is divided into a triangular and rectangular loading,
and these loadings are then replaced by their resultant forces. These
reactions have been computed and are shown on the beam’s {ree-

body diagram, Fig. 485,

Shear and Moment Functions. A free-body diagram of the cut
section is shown in Fig. 4-8c. As above, the trapezoidal loading is
replaced by rectangular and triangular distributions. Note that the
intensity of the triangular load at the cut is found by proportion. The
resultant force of each distributed loading and its location are
indicated. Applying the equilibrium equations, we have

9
V=7 = 10% = 1.11x"

+1SF, =0 75— 10x — E{zﬂj(f)x] — V=0

Ans
Mg =0; —T5x + {lllr}(%) 4 E[EDJG);E +M=0

M = 75x — 5x* — 0.370x° ANS.




4.3 Shear and Moment Diagrams
for a Beam

+1ZF, =0

[+3ZMg =0

V +wx)Ax— (V +AV)=10
AV = w(x) Ax

—VAx — M — w(x) Axe(Ax) + (M + AM) =0

AM = VAx + w(x) e(Ax)?

X

[
A
s B
. ‘ : M, ‘

F- F;
I w=w(x) |
““ 4 H
C
M.
| Ax
fa)
Fig. 49
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Dividing by Ax and taking the limit as Ax — 0, these equations become

dVv
)
. (4=1)
Slope nf} B {Iﬂtenslt}r of
Shear Diagram | Distributed Load

dM
P
dx

]| f 2

opeof]|
Moment Diagram} = {Sher




Equations 4-1 and 42 can be “integrated” from one point to another

between concentrated forces or couples (such as from B to Cin Fig. 4-9a),
in which case

AV = f w(x)dx
i Area under (4-3)
Change ”“} = { Distributed Loadineg
Shear ;
Diagram
and
AM = f Vix)dx

(4
Change iu} B {A:E_a under
Moment Shear Diagram




Procedure for Analysis

The following procedure provides a method for constructing the shear
and moment diagrams for a beam using Egs. 4-1 through 4-6.

Support Reactions

® Determine the support reactions and resolve the forces acting on
the beam into components which are perpendicular and parallel
to the beam’s axis.

Shear Diagram

® Establish the V and x axes and plot the values of the shear at the
two ends of the beam.

® Since dV /dx = w, the slope of the shear diagram at any point is
equal to the intensity of the distributed loading at the point. (Note
that w is positive when it acts upward.)

® If a numerical value of the shear is to be determined at the point,
one can find this value either by using the method of sections as
discussed in Sec. 4-1 or by using Eq. 4-3, which states that the
change in the shear force is equal to the area under the distributed
loading diagram.

® Since w(x) is integrated to obtain V, if w(x) is a curve of degree n,
then Vi{x) will be a curve of degree n + 1. For example, if w(x) is
uniform, V{x) will be linear.




Moment Diagram

Establish the M and x axes and plot the values of the moment at
the ends of the beam.

Since dM/dx = V, the siope of the moment diagram at any point
is equal to the intensity of the shear at the point.

At the point where the shear 1s zero, dM/dx = 0, and therefore
this may be a point of maximum or mimmum moment.

If the numerical value of the moment s to be determined at a
point, one can find this value either by using the method of
sections as discussed in Sec. 4-1 or by using Eq. 44, which states
that the change in the moment is equal to the area under the shear
diggram.

Since V{(x) is integrated to obtain M. if V(x) 1s a curve of degree n.

then M(x) will be a curve of degree n + 1. For example, if V(x) is
linear. M(x) will be parabolic.




The two horizontal members of the power line support frame are
subjected to the cable loadings shown in Fig. 4-11a. Draw the shear
and moment diagrams for each member.

SOLUTION

Support Reactions. Each pole exerts a force of 6 kN on each
member as shown on the free-body diagram.

Shear Diagram. The end points x =0,V = —4kN and x = 6 m,
V' = 4 kN are plotted first, Fig. 4-11b. As indicated. the shear between
each concentrated force is consiant since w = dV /dx = (. The shear
just to the right of point B (or C and D) can be determined by the
method of sections, Fig. 4-114. The shear diagram can also be established
by “following the load™ on the free-body diagram. Beginning at A the
4 kN load acts downward so V ; = —4 kN. No load acts between A
and B so the shear is constant. At B the 6 kN force acts upward, so the
shear jumps up 6 kN, from —4 kN to +2 kN, etc.




V negative constant
M slope negative constant

V positive constant
M slope positive conslant

ll‘L"*-.

Moment Diagram. The moment at the end points x = 0, M = Oand
x = 6m M = 0 is plotted first, Fig. 4-11c. The slope of the moment
diagram within each 1.5-m-long region is constant because V is
constant. Specific values of the moment, such as at C, can be deter-
mined by the method of sections, Fig. 4-11d, or by finding the change
in moment by the area under the shear diagram. For example, since
Ms=0 at A, then at C, M= M, + AM 40 = 0 + (—4)(1.5)
+ 2(1.5) = —3kN-m.




EXAMPLE |4.8

Draw the shear and moment diagrams for the beam in Fig. 4-12a.

SOLUTION

Support Reactions. The reactions have been calculated and are
shown on the free-body diagram of the beam, Fig. 4125,

Shear Diagram. The end points x = 0, V = +30kN and x = 9 m,
V = —60 kN are first plotted. Note that the shear diagram starts
with zero slope since w = 0 at x = (), and ends with a slope of
w = —20 kN/m.

The point of zero shear can be found by using the method o
sections from a beam segment of length x, Fig. 4-12¢. We require V' = 0,
so that

1[, {
+12F,=0; 30— E[Eﬂ(i)]x —0 x=520m

V (kN)

f M(kN-m)

20 kN /m

(&) 60 kN

w negative increasing
V slope negative increasing

V positive decreasing
M slope positive decreasing

V negative increasing
M slope negative increasing

104

x (m)

(d)




Moment Diagram. For 0 < x < 520m the value of shear is
positive but decreasing and so the slope of the moment diagram is also
positive and decreasing (dM/dx = V). At x = 520m, dM/dx = 0.
Likewise for 520 m < x < 9m, the shear and so the slope of the

moment diagram are negative increasing as indicated.
The maximum value of moment is at x = 520 m since dM/dx =
V =0 at this point, Fig. 4-124. From the free-body diagram in

Fig. 4-12¢ we have

+EMg=0;  —30(5.20) + ;[zﬂ(fﬂ)}(ﬁ.zﬂ}(%) +M=0

M=1MEkN-m




EXAMPLE (4.9

A

600 1b

l 4000 Ib-fr

€ D 4 ;
I—‘m n___.l : ﬁh_JrhSﬂJ
(a)
&00 1b
l 4000 Ib - fi
e j}
10 ft Sft—}5h :f
1 b 500 b
(b)
w =
viey V slope =)
" i T 50" ()
o 3
V negative constant
M (Ib-ft) M slope megative constant
2500
1000

(d)

x ()

N

— 1500

Draw the shear and moment diagrams for the beam shown in Fig. 4-13a.

SOLUTION

Support Reactions. The reactions are calculated and indicated on

the free-body diagram.

Shear Diagram. The values of the shear at the end points A
(V4= +1001b) and B (V5 = —5001b) are plotted. At C the shear is
discontinuous since there is a concentrated force of 600 1b there. The
value of the shear just to the right of C can be found by sectioning
the beam at this point. This vields the free-body diagram shown in
equilibrium in Fig. 4-13¢. This point (V' = —500 Ib) is plotted on the
shear diagram. Notice that no jump or discontinuity in shear occurs
at D). the point where the 4000-lb-ft couple moment is applied.
Fig. 4-13b.

Moment Diagram. The moment at each end of the beam is zero,
Fig. 4-13d. The value of the moment at C can be determined by the
method of sections, Fig. 4-13e, or by finding the area under the shear
diagram between A and C. Since M 4, = 0,

M

My + AM 4= 0 + (100 Ib)(10 ft)
M- = 10001b-ft
Also, since M- = 1000 Ib - ft, the moment at D is

Mp = M¢c + AMep = 1000 Ib-ft + (—500 1b)(5 ft)
Mp = —15001Ib-ft




A jump occurs at point D) due to the couple moment of 4000 Ib - ft.
The method of sections, Fig. 4-13f, gives a value of +2500 1b - ft just to
the right of D.

600 Tb
600 b
o 2500 Ib-fi
1000 Tb- ft y o0
! | } l )
— l ) D
¢ ke F—101t St~ —301b
— AL
— 1o it
10D Ib
(e) (f)

Fig. 4-13




EXAMPLE |4.11

The beam shown in the photo is used to support a portion of the
overhang for the entranceway of the building. The idealized model for
the beam with the load acting on it is shown in Fig. 4-15a. Assume B is
a roller and C is pinned. Draw the shear and moment diagrams for the
beam.

SOLUTION

Support Reactions. The reactions are calculated in the usual
manner., The results are shown in Fig. 4-15b.

10 kN /m

Shear Diagram. The shear at the ends of the beam is plotted first,
IR A P | % ie.V, = 0and V. = —2.19 kN, Fig.4-15¢.To find the shear to the left
E | of B use the method of sections for segment AB, or calculate the area
A TI1% ET under the distributed loading diagram.ie., AV = Vz — 0= —10(0.75),
075 m__‘ i m Vy- = —7.50 kN. The support reaction causes the shear to jump up
—7.50 + 15.31 = 7.81 kN. The point of zero shear can be determined
from the slope —10kN/m. or by proportional triangles, 7.81/x =
2.19/(1 — x). x = 0.781 m. Notice how the V diagram follows the
negative slope, defined by the constant negative distributed loading.

R e e e g e L

- - - — T - 1l - w " B " = [ T ]



Moment Diagram. The moment at the end points is plotted first,
(a) M, = M- =0, Fig. 4-15d. The values of —2.81 and 0.239 on the
moment diagram can be calculated by the method of sections, or by

il e finding the areas under the shear diagram. For example, AM =
v l i l v l I l l l l l 1+ Mp—0=21-750)(075) = —2.81, My = —281 kN-m. Likewise,
i show that the maximum positive moment is (.239 kN -m. Notice
T TB C how the M diagram is formed. by following the slope, defined by the
— 075 m—| "R V diagram.
1531 kN 219 kN
(b)
V (kN) M (kN-m)
781

\ 0,239
. x (m) I — x (m)

— 0781 m —-Iw—z_m

—2.81]
(d)

—7.50
(c)
Fig. 4-13




EXAMPLE [4.12

Draw the shear and moment diagrams for the compound beam shown
in Fig. 4-16a. Assume the supports at A and C are rollers and B and E

are pin connections,

3 kit

2 k/ft 3k
T }
Euﬂ'k-ﬂ(- ' =
A B i Z
e ‘ = ‘D ;
—10ft— {60t ——4h-}—6ft—| 6t
SOLUTION |

Support Reactions. Once the beam segments are disconnected
from the pin at B, the support reactions can be calculated as shown in

Fig. 4-16b.
Mk Sk 3k/ft

[ TP W i)




Shear Diagram. As usual, we start by plotting the end shear at A
and E, Fig. 4-16¢. The shape of the V diagram is formed by following
its slope, defined by the loading. Try to establish the values of shear
using the appropriate areas under the load diagram (w curve) to find
the change in shear. The zero value for shear at x = 2 ft can either be
found by proportional triangles, or by using statics, as was done in
Fig. 4-12¢ of Example 4-5.

Moment Diagram. The end moments M, = 60k-ft and M =0
are plotted first, Fig. 4-16d. Study the diagram and note how the
various curves are established using dM/dx = V. Verify the numerical
values for the peaks using statics or by calculating the appropriate
areas under the shear diagram to find the change in moment.

Vik)

2 10 s 20

x (ft)

—14 a1 {c)
(0 6 @
; ! 5
—95

x (ft)



4.4 Shear and Moment Diagrams
for a Frame

Recall that a frame is composed of several connected members that are
either fixed or pin connected at their ends. The design of these
structures often requires drawine the shear and moment diagrams for
each of the members.

The simply supported girder of this concrete building frame was
designed by first drawing its shear and moment diagrams.



EXAMPLE | 4.13

Draw the moment diagram for the tapered frame shown in Fig.4-17a.
Assume the support at A is a roller and B is a pin.

5k
| 151 |
¥ I
3k
I
aft
3k
1k
6 ft
15k-ft 15t
1 3k - t— 1 K
Fill #
3]:—L||- L)
1k

(e}




M (k-ft)

—15

15

member CH

x (ft)
11 7
6

/l I{I—t]

M (k-ft)

—15
member AC

(d)

SOLUTION

Support Reactions. The support reactions are shown on the
free-body diagram of the entire frame. Fig. 4-17b. Using these results,
the frame is then sectioned into two members, and the internal reac-
tions at the joint ends of the members are determined, Fig. 4-17c.
Note that the external 5-k load 1s shown only on the free-body diagram
of the joint at C.

Moment Diagram. Inaccordance with our positive sign convention,
and using the techniques discussed in Sec. 4-3, the moment diagrams
for the frame members are shown in Fig. 4-174.




EXAMPLE | 4.14

Draw the shear and moment diagrams for the frame shown in
Fig. 4-18a. Assume A is a pin, € is a roller, and B is a fixed joint.
Neglect the thickness of the members.

SCLUTION

Notice that the distributed load acts over a length of
10 ft /2 = 14.14 ft. The reactions on the entire frame are calculated
and shown on its free-body diagram, Fig. 4-185. From this diagram the
free-body diagrams of each member are drawn. Fig. 4-18¢c. The
distributed loading on 5C has components along BC and perpendicular
to its axis of (0.1414 k/ft) cos 45° = (0.1414 k/ft) sin 45° = 0.1 k/ft
as shown. Using these results, the shear and moment diagrams are
also shown in Fig. 4-18c.

10 fe

10 fi




05k

(01414 k /F)(14.14 1) = 2 k

206

10 ft

=
L
=

o
Fi ft—

2k

Vik)

=
L
i/
ol
-0.5

2k (c) {b})




EXAMPLE | 4.15

Draw the shear and moment diagrams for the frame shown in Fig. 4-19a.
Assume A is a pin, C is a roller, and B is a fixed joint.

80 kN

40 kN/m

(a)

S0 kN

(b)



SOLUTION

Support Reactions. The free-body diagram of the entire frame is
shown in Fig. 4-19b. Here the distributed load, which represents wind
loading. has been replaced by its resultant. and the reactions have been
computed. The frame is then sectioned at joint B and the internal
loadings at B are determined, Fig. 4-19¢. As a check, equilibrium is
satisfied at joint B, which is also shown in the figure.

Shear and Moment Diagrams. The components of the distributed
load, (72 kN)/(5m) = 144 kN/m and (96 kN)/(5m) = 19.2 kN/m,
are shown on member AB, Fig. 4-19d. The associated shear and
moment diagrams are drawn for each member as shown in Figs. 4-19d
and 4-19¢.




170kN-m_ 15kN 170 kN-m

15kN KN
36.87° EN
96 kN, .
.|
1.5kN (l| &
- 1T0KN-m"® ' 2.5 kN T
2 kN
82.5 kN

(c)




170 kN-m

80 kN

2.5kN T
82.5 kN
V (kN)

2 .

28 | X (m)
—82.5

M (kEN-m)
170 165

(d}




4.5 Moment Diagrams Constructed by
the Method of Superposition

Since beams are used primarily to resist bending stress, it 1s important
that the moment diagram accompany the solution for their design. In
Sec. 4-3 the moment diagram was constructed by first drawing the shear
diagram. If we use the principle of superposition, however, each of the
loads on the beam can be treated separately and the moment diagram
can then be constructed in a series of parts rather than a single and
sometimes complicated shape. It will be shown later in the text that this
can be particularly advantageous when applying geometric deflection
methods to determine both the deflection of a beam and the reactions
on statically indeterminate beams.

Most loadings on beams in structural analysis will be a combination of
the loadings shown in Fig. 4-20. Construction of the associated moment
diagrams has been discussed in Example 4-8. To understand how to use



Most loadings on beams in structural analysis will be a combination of
the loadings shown in Fig. 4-20.
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EXAMPLE [ 4.16

Draw the moment diagrams for the beam shown at the top of Fig. 4-23a
using the method of superposition. Consider the beam to be can-
tilevered from the support at B.

SOLUTION

If the beam were supported as a cantilever from B, it would be

subjected to the statically equivalent loadings shown in Fig. 4-23a. The

superimposed three cantilevered beams are shown below it together

with their associated moment diagrams in Fig. 4-23b. (As an aid to

their construction, refer to Fig. 4-20.) Although not needed here, the

sum of these diagrams will yield the resultant moment diagram for the

beam. For practice, try drawing this diagram and check the results. 5k/ft

150 k- ft

22.5k I5k




M (k-ft)
x (ft)
—150)
+
M (k-ft) 3375
% /"’1 v (ft)
+
I x (ft)

superposition of associated moment diagrams

(b)

Sk/ft

vy g 111]
Ls ft ! 151t ‘T

25k 15 k
I
Eﬁll(k-ft
+
'lf 15 ft
25k
= 5 k/ft
15 fi

superposition of cantilevered beams
(a)

Fig. 4-23




EXAMPLE | 4.17

Draw the moment diagrams for the beam shown at the top of Fig. 4-24a
using the method of superposition. Consider the beam to be cantilevered
from the pin at A.

SOLUTION

The superimposed cantilevered beams are shown i Fig. 4-24a
together with their associated moment diagrams, Fig. 4-24b. Notice
that the reaction at the pin (22.5 k) is not considered since it produces
no moment diagram. As an exercise verify that the resultant moment
diagram is given at the top of Fig. 4-24b.
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Cables and Arches 5




5.1 Cables

Cables are often used in engineering structures for support and to
transmit loads from one member to another. When used to support
suspension roofs, bridges, and trolley wheels, cables form the main

load-carrying element in the structure. In the force analysis of such

When deriving the necessary relations between the force in the cable
and its slope, we will make the assumption that the cable is perfectly
flexible and inextensible. Due to its flexibility, the cable offers no
resistance to shear or bending and. therefore, the force acting in the
cable 1s always tangent to the cable at points along its length.

9.2 Cable Subjected to Concentrated
Loads

When a cable of negligible weight supports several concentrated loads,
the cable takes the form of several straight-line segments, each of which
15 subjected to a constant tensile force.



EXAMPLE |5.1

Determine the tension in each segment of the cable shown in Fig. 5-2a.
Also, what 1s the dimension A7

SOLUTION

By inspection, there are four unknown external reactions (A,. A, D,
and D,) and three unknown cable tensions, one in each cable segment.
These seven unknowns along with the sag i can be determined from
the eight available equilibrium equations (EZF, =0.ZF, = 0)
applied to points A through D.

A more direct approach to the solution is to recognize that the slope e m_|_ i
of cable CD is specified, and so a free-body diagram of the entire cable
is shown in Fig. 5-2b. We can obtain the tension in segment CD as (a)
follows:

LHEZEM, =10
Tep(3/5)(2m) + Tep(4/5)(5.5m) — 3kN(2m) — 8kN(4m) =0
Trp=6.T9kN Ans.

Now we can analyze the equilibrium of points C and B in sequence.
Point C (Fig. 5-2¢);




HXIF, =0, 6.79KN(3/5) — Tpccosbpe =0
+12F, =0, 6.79KkN(4/5) — 8kN + Tyesinfpe = 0
Ope = 32.3° Tpe = 482kN Ans,

Point B (Fig. 5-2d),

HIF, =0 —Tgacosfgy + 482 kNcos323° =0 . ¥
HaA
+TZF, =1 Tpasinfgy — 482kNsin323° —3kN =10
fOgq = 33.8° I'py = 6.90kN Ans. Hﬂflx
Hence, from Fig. 5-2a, 3kN  481kN
(d)

h = (2m)tan53.8° = 2.74m Ans Fig. 5-2




9.3 Cable Subjected to a Uniform
Distributed Load

Cables provide a very effective means of supporting the dead weight of
girders or bridge decks having very long spans. A suspension bridge is a
typical example, in which the deck is suspended from the cable using a
series of close and equally spaced hangers.

wﬂ['-"m.r]l_£ _|
— 2 .
AT
i T \ T+ AT
i |
I I
I I
h E ﬂlr/d
] _-_—_lI 1'
' = Ay
: - : H—f”;\' )
X T ‘I\\.; ‘1‘1 |




Tcostl = Fy (5-4)

_dy  wyx
tanf = is 7 (5-6)
Wi 2 .
= 5-7
Y=g Fr X (5-7)
F Wl (5-8)
H= o g
Toax = VFY + (woL)? (5-10)

Or, using Eq. 58, we can express 7T, In terms of wy, 1.e.,

T, = WoL V1 + (L/2h)?

(5-11)



EXAMPLE |5.2

The cable in Fig. 5-5a supports a girder which weighs 850 Ib/ft.
Determine the tension in the cable at points A, B, and C.

Fig. 5-5



SOLUTION

The orgin of the coordinate axes is established at point B. the lowest
point on the cable, where the slope 1s zero, Fig. 5-5b. From Eq. 5-7. the
parabolic equation for the cable is;

Assuming point C is located x' from B, we have

Also, for point A,

oWy 850 lbfftxg | Er?
Y = 2R, 2F Fy
425
0 = 2
i
Fy=2125c"
425
40 = —[—(100 — x")J?
Fy
425
—(100 — x")J
21252 L *)l

2+ 200x" — 10000 =0

x' =4142 ft

(1)

(2)




Thus, from Eqgs. 2 and 1 (or Eq. 5-0) we have

Fy = 21.25(41.42)% = 364592 1b

dy 850
= = 0.023 3
i HaAmn S - Haalx (3)
At point A,
X =—100 = 41.42) = —58.58 ft
dy .
tan @, = —= = 0.02331(—58.58) = —1.366
dx | —_sg58
4= —53.79°
Using Eq. 5-4,
F 59,
g sl gy POV, s Anis

cosf#, cos(—53.797)




At point B,x = 0,

dy
tanfig = — =0, By = 0°
dn vg s i B
Fy 36 459.2
I'p = = =365k
B cos fy cos 0
At point C,
x=41.42 ft
-4y 5 L
tan 8 = — = 0.02331(41.42) = 0.9657
dx| _4 .4
O = 44.0°
F 59.
7 H _ 364 92=5{].?’k

cos H¢  cos 44.0°

Ans.

Ans.




EXAMPLE |5.3

The suspension bridge in Fig. 5-6a is constructed using the two
stiffening trusses that are pin connected at their ends C and supported
by a pin at A and a rocker at B. Determine the maximum tension in
the cable /H. The cable has a parabolic shape and the bridge is
subjected to the single load of 50 kN.

— 4@3m=12m—-—-4@3m=12m —

(a)



SOLUTION
The free-body diagram of the cable-truss system 1s shown in Fig. 5-6b.

According to Eq. 54 (T cos # = Fy ). the horizontal component of
cable tension at [ and H must be constant, Fy. Taking moments about

B.we have
([ +EZMp = 0; —I}.{E-’-I m) = A}.{E-fl m) + 50 kN(9m) = 0
J!’_1J 4+ A_.}. = 18.75




If only half the suspended structure is considered, Fig. 5-6¢, then
summing moments about the pin at C, we have

(+EMc =0; Fy(14m) — Fy(6m) — 1,(12m) — A,(12m) = 0
1, + A, = 0.667F




From these two equations,

18.75 = 0.667Fy
Fy = 28125kN

To obtain the maximum tension in the cable, we will use Eq. 5-11, but
first it 15 necessary to determine the value of an assumed uniform
distributed loading wy from Eq. 5-5:;

Wk 2(28.125kN)(8 m
= i 2 1( ) 3125 KkN/m
L’ (12 m)>

Thus, using Eq. 5-11, we have

Toax = WoL V1 + (L/2h)?
= 3.125(12m) V1 + (12 m/2(8 m))?
= 46.9 kN Ans.




9.4 Arches

Like cables, arches can be used to reduce the bending moments In
long-span structures. Essentially, an arch acts as an inverted cable. so 1t
recelves 1ts load mainly in compression although, because of its rigidity, 1t
must also resist some bending and shear depending upon how it is loaded
and shaped. In particular, if the arch has a parabolic shape and 1t 1s
subjected to a uniform horizontally distributed vertical load, then from the
analysis of cables it follows that only compressive forces will be resisted by
the arch. Under these conditions the arch shape is called a funicular arch
because no bending or shear fﬂl‘CES occur Wl[h][] the arch.

SRR B/ LIS, V7

extrados _ — CTOWn
(or back)

springline

]
centerline rise

~ intrados

(or E-l:Jf[i!.}f

haunch

HH'—at:lulm'z::rlt



fixed arch - three-hinged arch
(a) (c)

tied arch

(d)




9.9 Three-Hinged Arch

To provide some 1nsight as to how arches transmit loads, we will now
consider the analysis of a three-hinged arch such as the one shown in
Fig. 5-9a. In this case, the third hinge 1s located at the crown and the
supports are located at different elevations. In order to determine the
reactions at the supports, the arch 1s disassembled and the free-body
diagram of each member 1s shown in Fig. 5-9b. Here there are six
unknowns for which six equations of equilibrium are available. One
method of solving this problem is to apply the moment equilibrium
equations about points A and B. Simultaneous solution will yield the
reactions C, and C,. The support reactions are then determined from
the force equations of equilibrium. Once obtained. the internal normal
force, shear, and moment loadings at any point along the arch can be
found using the method of sections. Here. of course. the section should
be taken perpendicular to the axis of the arch at the point considered. For
example, the free-body diagram for segment AL 1s shown 1n Fig. 5-9c.



(a)

C,
(b)
Fig. 5-4

7~ Y
(c)



EXAMPLE 5.4

‘ - ™ " The three-hinged open-spandrel arch bridge like the one shown in the
; 2 S - photo has a parabolic shape. If this arch were to support a uniform
* load and have the dimensions shown in Fig. 5-10a, show that the arch
is subjected only to axial compression at any intermediate point such

as point D. Assume the load is uniformly transmitted to the arch ribs.
N 0 St T

500 Ib /ft X

(a)
Fig. 5-10




SOLUTION

Here the supports are at the same elevation. The free-body diagrams
of the entire arch and part BC are shown in Fig. 5-10b and Fig. 5-10c.
Applying the equations of equilibrium, we have:

(b)

Entire arch:
(+EM, = 10; Cy{lﬂﬂft] — 50k(50ft) =0
C_,r. =25k




Arch segment BC:

(+EMp=0: —25k(25ft) + 25k(50ft) — C(25ft) = 0
C.=25k B,

LIZF. =0 B.=25k

+1ZF, = 0; B,—25k+25k=0

y=10

A section of the arch taken through point D, x = 251,
y = —25(25)%/(50)* = —6.25 ft, is shown in Fig. 5-10d. The slope of

the segment at D 15

dy —50
tanf = — = =X = —0.5
dx {5{]]‘_ x=25 it

P = —26.6°

25k
e e e S R SRR R
1 :
T T
ab
=g
B, = 251t
&
S
;-—zﬁﬂ—u—z:in—r_
C




Applying the equations of equilibrium, Fig. 5-10d4 we have
KI3F,. =0; 25k — Npcos26.6° — Vpsin26.6° = 0
+TEF}. =k —125k + Npsin26.6° — V5 cos20.6° = 0

(+EMp=0;  Mp + 125k(125ft) — 25 k(625 ft) = 0

Np=280k Ans.
Vp=10 Ans.
Mp=10 Ans.

Note: If the arch had a different shape or if the load were nonuniform, then the internal
shear and moment would be nonzero. Also, if a simply supported beam were used to
support the distributed loading. it would have to resist a maximum bending moment of
M = 625 k- ft. By comparison, it is more efficient to structurally resist the load in direct
compression (although one must consider the possibility of buckling) than to resist the
load by a bending moment.

[ad

=
[
'-'.-’I'."Ir
=

125 ft12.5 ft
(d)




EXAMPLE |5.5

The three-hinged tied arch is subjected to the loading shown in
Fig. 5-11a. Determine the force in members CH and CB. The dashed
member GF of the truss is intended to carry no force.

(a) (b)
Fig. 5-11




(c)

SOLUTION
The support reactions can be obtained from a free-body diagram of

the entire arch, Fig. 5-11b:

(+=M4=0: E,(12m) — 15kN(3m) — 20kN(6m) — 15kN(9m) = 0

E,=25kN
XK 3F,=0: . =00
+12F,=0; Ay, —15kN —20kN — 15kN + 25kN =0
A, = 25kN

The force components acting at joint C can be determined by consid-
ering the free-body diagram of the left part of the arch, Fig. 5-1lc.
First, we determine the force:

(+SMe=0;  Fupe(5m) — 25kN(6m) + 15kN(3m) = 0
Fur = 21.0kN




Then,
LSF. =0, -C,+210kN=0, C,=210kN

+15F,=0; 25kN — 15kN —20kN + C, =0, C,=10kN

To obtain the forces in CH and CB, we can use the method of joints
as follows:

Joint G; Fig. 5-11d,

Foe — 20kN = 0
Fee = 20kN (C)

+1ZF, =0

Joint C: Fig. 5-11e,

Feplor) — 210kN — Fey(5) =0

+13F, =0 Feplog) + Feulom) — 20kN + 10kN = 0

F{'if
(d)

20kN

F.-I'.'H'
1
3
F('ﬂ 3
10 kN

21.0kN




Fcp = 26.9kN (C)
Fey = 474kN (T)

Auns.

Ans.

Note: Tied arches are sometimes used for
bridges. Here the deck is supported by
suspender bars that transmit their load to
the arch. The deck is in tension so that it

supports the actual thrust or horizontal

force at the ends of the arch.




EXAMPLE [5.6

The three-hinged trussed arch shown in Fig. 5-12a supports the
symmetric loading. Determine the required height A, of the joints B

and D, so that the arch takes a funicular shape. Member HG is
intended to carry no force.

i»-m ft 10 ft —10ft—+—10 ﬂ—-(




¥

A 10 ft -|- 10 ft —
C === | =
-Hﬁ..‘:‘ _]'r_ﬂ
%."'"-.. I
!
2 i 15
S
e
%
bt S
.3
?a
L
E -
(b)
Fig. 5-12

SOLUTION

For a symmetric loading. the funicular shape for the arch must be
parabolic as indicated by the dashed line (Fig. 5-125). Here we must
find the equation which fits this shape. With the x, y axes having an
origin at C, the equation is of the form y = —cx’. To obtain the
constant ¢, we require

—(15 ft) = —¢c(20 ft)?
¢ = 0.0375/ft

Therefore,
yp = —(0.0375/ft)(10 ft)2 = —3.75 ft
So that from Fig. 5-12a,
By = 15t — 3B R=11251 Ans
Using this value. if the method of joints i1s now applied to the truss, the
results will show that the top cord and diagonal members will all be

zero-force members, and the symmetric loading will be supported
only by the bottom cord members AB, BC, CD, and DE of the truss.




Influence Lines for
Statically Determinate
Structures




6.1 Influence Lines

In the previous chapters we developed techniques for analyzing the
forces in structural members due to dead or fixed loads It was shown
that the shear and moment diagrams represent the most descriptive
methods for displaying the vanation of these loads in a member. If a
structure is subjected to a live or moving load, however, the vanation of
the shear and bending moment in the member is best described using
the mfluence line. An influence line represents the variation of either the
reaction, shear, moment, or deflection at a specific point iIn a member
as a concentrated force moves over the member. Once this line 1s
constructed, one can tell at a glance where the moving load should be
placed on the structure so that it creates the greatest influence at the
specified point. Furthermore. the magnitude of the associated reaction.
shear, moment, or deflection at the point can then be calculated from the
ordinates of the influence-line diagram. For these reasons, influence lines
play an important part in the design of bridges, industnal crane rails,
conveyors, and other structures where loads move across their span.



Procedure for Analysis

Either of the following two procedures can be used to construct the
influence line at a specific point P in a member for any function
(reaction, shear, or moment). For both of these procedures we will
choose the moving force to have a dimensionless magnitude of unity.*

Tabulate Values

® Place a unit load at various locations, x, along the member, and
at each location use statics to determine the value of the function
(reaction, shear, or moment) at the specified point.

® If the influence line for a vertical force reaction at a point on a
beam is to be constructed, consider the reaction to be posifive at
the point when it acts upward on the beam.

® [If a shear or moment influence line is to be drawn for a point, take
the shear or moment al the point as positive according to the same

sign convention used for drawing shear and moment diagrams.
(See Fig. 4-1.)

®* All statically determinate beams will have influence lines that
consist of straight line segments. After some practice one should
be able to minimize computations and locate the unit load only at
points representing the end points of each line segment.




® To avoild errors, it 1s recommended that one first construct a table,
listing “unit load at x” versus the corresponding value of the
function calculated at the specific point; that is, “reaction R.,”
“shear V.” or "moment M.” Once the load has been placed at
various points along the span of the member, the tabulated values
can be plotted and the influence-line segments constructed.

Influence-Line Equations

® The mfluence line can also be constructed by placing the unit load
at a variable position x on the member and then computing the
value of R, V, or M at the point as a function of x. In this manner,
the equations of the various line segments composing the
influence line can be determined and plotted.

*The reason for this choice will be explained in Sec. 6-2.




EXAMPLE [ 6.1

Construct the influence line for the vertical reaction at A of the beam A
in Fig. 6-1a. -ﬁf

SOLUTION

Tabulate Values. A unit load is placed on the beam at each selected

point x and the value of A, s calculated by summing moments about B.

For example, when x = 25 ft and x = 5 ft, see Figs. 6-1b and 6-lc,
respectively. The results for A, are entered in the table. Fig. 6-1d. A plot
of these values yields the influence line for the reaction at A, Fig. 6-1le.

|7 x=5ft ~11
10 ft ﬁﬂr f‘r o~ Tﬂy

(+EM;=0:—4,(10) + 1(75) =0 L+ EMy=0:—A,(10)+ 1(5)=0
A, =075 A, =05

(b) (c)




x | A,
0 |1
251075
3 |05
1'.?.5 0.25
0 10

influence line for A,
(d)
(e)

Influence-Line Equation. When the unit load is placed a variable
distance x from A, Fig. 6-1f, the reaction A, as a function of x can be

determined from

(+ZMg=0; —A_._.(lﬂ} + (10 — x)(1) =0
A_‘. =1- 1—1[,1

This line is plotted in Fig. 6-1e.




EXAMPLE (6.2

Construct the influence line for the vertical reaction at B of the beam
in Fig. 6-2a.
(a)

Fig. -2
SOLUTION
Tabulate Values. Using statics, verify that the values for the reaction
B, listed in the table, Fig. 6-2b. are correctly computed for each
position x of the unit load. A plot of the values yields the influence
line in Fig. 6-2c¢.




E
B

[
e
b b e bn

s T
Sththing

(b)

influence line for B,

(c)
Influence-Line Equation. Applying the moment equation about A,
in Fig. 6-2d,
(+tEM =0 By(3) —Hx) =10
B, = %.1'
This is plotted in Fig. 6-2c.




EXAMPLE | 6.3

Construct the influence line for the shear at point C of the beam in

Fig. 6-3a. M
g J & -

SOLUTION 251t B
ik |

o — |

Tabulate Values. At cach selected position x of the unit load,

the method of sections is used to calculate the value of V. Note in (a)
particular that the unit load must be placed just to the left (x = 2.57)
and just to the right (x = 2.5") of point C since the shear is discontinu- Fig. 6-3

ous at C, Figs. 6-3b and 6-3c. A plot of the values in Fig. 6-3d yields
the influence line for the shear at C, Fig. 6-3e.

1

i

25 ft 25% fit & [
| i i 0 0
257|-025
' = : i C %.S* g.gs
e i T 75 | 025

10 |0

0.75 0.25 0.75 0.25

(d)




M,- T?F =0; V- ——{}..51 M, +T"'?F =0V —[l'i”i
0.25 {]25
(b) (c)
Influence-Line Equations. Here two equations have to be determined influence line for V-

since there are two segments for the influence line due to the
discontinuity of shear at C, Fig. 6-3f. These equations are plotted in
Fig. 6-3e.

l€)

] 25ft<x=10ft




EXAMPLE | 6.4

1 Construct the influence line for the shear at point C of the beam in
= Fig. 6-4a.

W SOLUTION
j Tabulate Values. Using statics and the method of sections, verify
-4 mh—lva, m—t— 4m that the values of the shear V¢ at point C in Fig. 6-4b correspond to
each position x of the unit load on the beam. A plot of the values in
(a) Fig. 6-4b yields the influence line in Fig. 6-4c.

Fig, 64

03 i
47| 05 Ve=—gx
12 -O_g influence line for V-

(b) (c)




Influence-Line Equations. From Fig. 644, verify that

Vf=—%.r D=x<4m

Ve=1—-4xr 4m<x=12m

These equations are plotted in Fig. 6-4c.

i x gl 3{{( T dm<x=12m
i:4m—-vi' T
Av=l_%.‘l’ B'|.'

(d)




EXAMPLE [ 6.5

Construct the influence line for the moment at point C of the beam in
Fig. 6-5a.

- JE—

A L=
soumon [
Tabulate Values. At each selected position of the unit load, the value 10 ft ———
of M¢ 1s calculated using the method of sections. For example, see
Fig. 6-5b for x = 2.5 ft. A plot of the values in Fig. 6-5¢ yields the (a)

influence line for the moment at C, Fig. 6-34.

Fig. (-5

2.5 ft
C
T _x | Mc
5 |25
e 51t 13.5 Illzﬁ
f "] infl line for M
( T : N+ZEM-=0 —M -+ [}‘25{5*’:{] infiuence lne [or M-
Ve

025
(b)




Influence-Line Equations. The two line segments for the influence
line can be determined using =M = 0 along with the method of
sections shown in Fig. 6-5¢. These equations when plotted wield the

influence line shown in Fig. 6-3d.

(+EMc=0; Mc+1(5—x)—(1-{x)5=0 (+ZMc=0. Mc—(1—4x)5=0

Mc=3%x 0=x<5ft Mc=5-3x 5ft<x=10ft

—
~ =

L .

- .

< —
S
"
—_—

| p—

(e)




EXAMPLE | 6.6

Construct the influence line for the moment at point C of the beam in
Fig. 6-6a.

Fig. 6-6
SOLUTION

Tabulate Values. Using statics and the method of sections, verify
that the values of the moment M- at point C in Fig. 6-6b correspond
to each position x of the unit load. A plot of the values in Fig. 6-6b
yields the influence line in Fig. 6-6c.




JHL-

influence line for M-

(b) (c)
Influence-Line Equations. From Fig. 6-0d verify that
M¢
M¢

5X O=x<4m

idm<xr=12m

I
-
|
=]
-

These equations are plotted in Fig. 6-bc.

J |
[

b !
&

dm<x=12m

Til) Mi) (1 =

x A =1 —%I

(d)




6.2 Influence Lines for Beams

Since beams (or girders) often form the main load-carrying elements of
a floor system or bridge deck, it is important to be able to construct the
influence lines for the reactions, shear. or moment at any specified point
in a beam.

Loadings. Once the influence line for a function (reaction. shear, or
moment) has been constructed, it will then be possible to position the
live loads on the beam which will produce the maximum value of the
function. Two types of loadings will now be considered.

Concentrated Force. Since the numerical values of a function for an
influence line are determined using a dimensionless unit load. then for
any concentrated force F acting on the beam at any position x, the value
of the function can be found by multiplying the ordinate of the influence
line at the position x by the magnitude of F.

S

1S e

.2_[_ &

influence line for A,

Fig. 6-7



Uniform Load. Consider a portion of a beam subjected to a uniform
load wy. Fig. 6-8. As shown. each dx segment of this load creates a
concentrated force of dF = wydx on the beam. If dF 15 located at x.
where the beam’s influence-line ordinate for some function (reaction.
shear, moment) is v, then the value of the functionis (dF)(v) = (wpdx)v.

dF = Wy dax

| .
; ! = Rid!
W A
-|rl'|-|r1r1'|r11 ) 1
: F B \
= _ﬂ-_
x
N - : b
4 X | —elx I ‘ influence line for A,

influence line for function [
A, Fig. 0-9

Fig. 6-8



EXAMPLE |6.7

Determine the maximum posifive shear that can be developed at
point C in the beam shown in Fig. 6-10a due to a concentrated moving
load of 4000 Ib and a uniform moving load of 2000 Ib/ft.

Vc
.75

-a__'_i e

ks B
25 ft 25 11: Vi
10 ft 025
(a)

influence line for V-
(b)

e SOLUTION
The influence line for the shear at C has been established in

Example 6-3 and is shown in Fig. 6-10b.

Concentrated Force. The maximum positive shear at C will occur
when the 4000-1b force is located at x = 2.5 ft, since this is the positive
peak of the influence line. The ordinate of this peak is +0.75; so that

Ve = 0.75(4000 1b) = 3000 Ib




Uniform Load. The uniform moving load creates the maximum
positive influence for V- when the load acts on the beam between
x = 2.5 ft and x = 10 ft, since within this region the influence line
has a positive area. The magnitude of V- due to this loading is

Ve = [3(10 ft — 2.5 ft)(0.75) [2000 Ib/ft = 5625 Ib

Total Maximum Shear at C.
(Vi) may = 3000 1b + 56251b = 8625 1b Ans

Notice that once the positions of the loads have been established using
the influence line, Fig. 6-10c, this value of (V). can alse be determined
using statics and the method of sections. Show that this is the case.

ISRNaNED
== L

}‘2.5 ft - ‘
, 10 ft |




EXAMPLE (6.8

The frame structure shown in Fig. 6-11a is used to support a hoist for
transferring loads for storage at points underneath it. It is anticipated
that the load on the dolly is 3 kN and the beam CB has a mass of
24 kg/m. Assume the dolly has negligible size and can travel the entire
length of the beam. Also, assume A is a pin and B is a roller. Determine
the maximum vertical support reactions at A and B and the maximum
moment in the beam at D.

Im——15m—-~—15m
| | ]

3kN




fad

SOLUTION

Maximum Reaction at A. We first draw the influence line for A,,
Fig. 6116, Specifically, when a unit load is at A the reaction at A is |
as shown. The ordinate at C, is 1.33. Here the maximum value for A,
occurs when the dolly is at €. Since the dead load (beam weight) must
be placed over the entire length of the beam, we have,

(A )max = 3000(1.33) + 24(9.81)[1(4)(1.33)]
= 463 kN Ans

Maximum Reaction at B. The influence line (or beam) takes the
shape shown in Fig. 6~11c. The values at € and 8 are determined by
statics. Here the dolly must be at 8. Thus,

(B, )max = 3000(1) + 24(9.81)[1(3)(1)] + 24(9.81)[(1)(~0.333) ]
= 331 kN Ans

Maximum Moment at D. The influence line has the shape shown
in Fig. 6-114. The values at € and P are determined from statics. Here,

(Mp)max = 3000(0.75) + 24(9.81)[1(1)(~0.5)] + 24(9.81)[4(3)(0.75)]
=246 kN-m Ang

Ay

- ;

influence line for A,

(b)
Ll m

— 0333 '

133

im

influence line for B,

Lch
|'lfﬂ

(.75
—1 m—|

0.5 -"'""-'rl-—u m—t—1.5 m—]|
influence line for Mp

{d)

Fig. 6-11

X




6.3 Qualitative Influence Lines

In 1886, Heinrich Miiller-Breslau developed a technique for rapidly
constructing the shape of an influence line. Referred to as the Miiller-
Breslau principle, it states that the influence line for a function (reaction,
shear, or moment) is to the same scale as the deflected shape of the beam
when the beam is acted upon by the function. In order to draw the
deflected shape properly, the capacity of the beam to resist the applied
function must be removed so the beam can deflect when the function 1s
applied.



(a)

Lp)
" 3.
/

"=~ _ deflected shape

-
.

-

(b)

x
influence line for A,

(c)



influence line for V- influence line for M

(c) (c)
Fig. 6-13 Fig. 6-14



EXAMPLE | 6.9

For each beam in Fig. 6-16a through 6-16c¢, sketch the influence line
for the vertical reaction at A.

SOLUTION

The support is replaced by a roller guide at A since it will resist A,
but not A . The force A, is then applied.

deflected shape A, influence line for A,

(a)
Fig. 6-16

Again, a roller guide is placed at A and the force A, is applied.




deflected shape influence line for A,

(b)

A double-roller guide must be used at A in this case, since this type of
support will resist both a moment M 4 at the fixed support and axial
load A,. but will not resist A,.

o
. A-“

B ———— i ————————————

vie
T

Y
o
@

-~

influence line for A,

(c)




EXAMPLE |6.10

For each beam in Figs. 6-17a through 6-17¢, sketch the influence line
for the shear at B.

SOLUTION

The roller guide is introduced at B and the positive shear Vg is
applied. Notice that the right segment of the beam will not deflect since
the roller at A actually constrains the beam from moving vertically,
either up or down. [See support (2) in Table 2-1.]

\ ' deflected shape influence line for Vg

Fig. 6-17

Placing the roller guide at B and applying the positive shear at B
yields the deflected shape and corresponding influence line.




(b)

e

deflected shape Vs influence line for Vi

Again, the roller guide is placed at B. the positive shear is applied,
and the deflected shape and corresponding influence line are shown.
Note that the left segment of the beam does not deflect, due to the
fixed support.

influence line for V




EXAMPLE [6.11

For each beam in Figs. 6-18a through 6—18c, sketch the influence line
for the moment at B.

SOLUTION

A hinge is introduced at B and positive moments Mg are applied to

the beam. The deflected shape and corresponding influence line are
shown.

m X
; . s B influence line for h

deflected shape

(a)
Fig. 6-18

Placing a hinge at B and applying positive moments Mg to the beam
yields the deflected shape and influence line.




B o T e o ,
deflected shape influence line for Mg

(b)

With the hinge and positive moment at B the deflected shape and
influence line are shown. The left segment of the beam is constrained
from moving due to the fixed wall at A.

Aﬁ ’1H_ |
B A o Srem, I - . N
deflected shape = influence line for My

(c)




EXAMPLE [6.12

Determine the maximum positive moment that can be developed at
point D in the beam shown in Fig. 6-19a due to a concentrated moving
load of 4000 Ib, a uniform moving load of 300 Ib/ft. and a beam weight
of 200 Ib/1t.

i Sh ! 10 ft |

Fig. 6-19

SOLUTION

A hinge 1s placed at [’ and positive moments My, are applied to the
beam. The deflected shape and corresponding influence line are shown
in Fig. 6-195. Immediately one recognizes that the concentrated
moving load of 4000 Ib creates a maximum positive moment at D) when
it is placed at D, 1.e., the peak of the influence line. Also, the uniform
moving load of 300 Ib/ft must extend from C to E in order to cover
the region where the area of the influence line is positive. Finally, the
uniform weight of 200 Ib/ft acts over the entire length of the beam. The




loading is shown on the beam in Fig. 6-19¢. Knowing the position of
the loads, we can now determine the maximum moment at D using
statics. In Fig. 6-19d the reactions on BE have been computed.
Sectioning the beam at D and using segment DE. Fig. 6-19¢, we have

+3Mp=0; —Mp— 5000(5) + 4750(10) = 0
Mp=225001b-ft = 22.5k-ft Ans,

15
influence line for M,,

(b)
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-
—

et

500 Ib/ft
200 b /ft l I
J L
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D
&
—— 5t —--L— 5t -—-}-—--5 ft j 101t |
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4000 b SO0 b

S UL S S

This problem can also be worked by using numerical values for the
influence line as in Sec. 6-1. Actually, by inspection of Fig. 6-19b, only
the peak value /i at D must be determined. This requires placing a unit
load on the beam at ) in Fig. 6-19a and then solving for the internal
moment in the beam at [). Show that the value obtained is i = 3.33. By
proportional triangles, #'/(10 — 5) = 3.33/(15 — 10) or k' = 3.33.
Hence, with the loading on the beam as in Fig. 6-19c, using the areas
and peak values of the influence line, Fig. 6195, we have

Mp

500(3(25 — 10)(3.33) | + 4000(3.33) — 200[3(10)(3.33) |
225001b-ft = 225k ft Ans




6.4 Influence Lines for Floor Girders




EXAMPLE | 6.13

Draw the influence line for the shear in panel CD of the floor girder
in Fig. 6-21a.
i S C D E
== | |
Ll[}ﬂ — on——100——100—
Fig. 6-21 (@)
SOLUTION
%% Tabulate Values. The unit load is placed at each floor beam location
1wl o and the shear in panel CD is calculated. A table of the results is shown
%g _ggﬁg in Fig. 6-215. The details for the calculations when x = Oand x = 20 ft
ol o are given in Figs. 6-21c and 6-21d, respectively. Notice how in each
case the reactions of the floor beams on the girder are calculated first,
() followed by a determination of the girder support reaction at F (G, 1s
not needed). and finally, a segment of the girder is considered and the
internal panel shear Vp1s calculated. As an exercise, verify the values
for Vep when x = 10 ft, 30 ft, and 40 ft.




A}. *H i atx =200
ATII R, =0 H.;T- f._.
= — gl B. =1 =]
I—IDlt G"' 30 it I _ ‘ -
| Ty, B J IZM;= 0 F, = 0333
i i Gih |
EMg=0F=0333 (Tn— E _]] 10 ft—j 0 it "
i3 ¥
Yo ¥ 1
Fy =033 M( TE E '?J"-F-F o Vip= —0333
EF, = 0 Vip = 0333 VYien o
.1 -

(d)
Influence Line. When the tabular values are plotted and the points
connected with straight line segments, the resulting influence line for
V -p is as shown in Fig. 6-21e.

(ch

Yo

0.333

0.333
\ 5 /\\
l I X
m‘\\/’}_ﬁ 30 40

—1.333

influence line for Viep
(e)




ExampLe le.as R

Draw the influence line for the moment at point F for the floor girder
in Fig. 6-22a.

}_.r._-l B i x | Mg
A] 0 [0
] 2 10429
F 4 | 0857
B

Tm ?m 2.57T1
10 | 2.429
| | — 4 m 4m 4m 12 | 2.286

(a) (b)
Fig. 6-22

SOLUTION

Tabulate Values. The unit load 1s placed at x = 0 and each panel
point thereafter. The corresponding values for M, are calculated and
shown in the table, Fig. 6-225. Details of the calculations for x = 2 m
are shown in Fig. 6-22¢. As in the previous example, it is first necessary
to determine the reactions of the floor beams on the girder, followed
by a determination of the girder support reaction G, (H, 1s not
needed), and finally segment GF of the girder is considered and the
internal moment M- is calculated. As an exercise, determine the other
values of M listed in Fig. 6-22b.




Influence Line. A plot of the tabular values yields the influence line

for Mg, Fig. 6-224.

1 atx=2m

Af—f——?j IM,=0; B, =05
Im'2m

[

A-" B, =05
2m
| { i
L]
&5 m !'F fim
H, G,
"EMy =G, = 00714 '
M,
M =M. = U.-ﬂg( li' = N
| F
Yeo | 6 m
G, = 00714

c)

1571

2429

2.286

0.857
(.429

=4

8 10 12

influence line for M

(d)

16




6.5 Influence Lines for Trusses

sway
bracing [

lateral

Trusses are often used as primary load-carrying elements for bridges.
Hence, for design it i1s important to be able to construct the influence
lines for each of its members. As shown in Fig. 6-23, the loading on
the bridge deck is transmitted to stringers, which in turn transmit the

loading to floor beams and then to the joints along the bottom cord of
the truss. Since the truss members are affected only by the joint loading.

we can therefore obtain the ordinate values of the influence line for a
member by loading each joint along the deck with a unit load and then
use the method of joints or the method of sections to calculate the force
in the member.




Draw the influence line for the force in member GB of the bridge
truss shown in Fig. 6-24a.

SOLUTION

Tabulate Values. Here each successive joint at the bottom cord is F
loaded with a unit load and the force in member GB is calculated 2
using the method of sections, Fig. 6-245. For example, placing the unit
load at x = 6 m (joint B), the support reaction at £ is calculated first,
Fig. 6-24a, then passing a section through HG, GB, BC and isolating
the right segment, the force in GB is determined, Fig. 6-24c. In the
same manner, determine the other values listed in the table.

——
‘R’mmo«o|'—1

|

S

)

S

e |




Influence Line. Plotting the tabular data and connecting the points
yields the influence line for member G B, Fig. 6-244. Since the influ-
ence line extends over the entire span of the truss, member GB 1s
referred to as a primary member. This means GB i1s subjected to a
force regardless of where the bridge deck (roadway) is loaded, except,
of course, at x = 8 m. The point of zero force, x = 8 m, 1s determined
by similar triangles between x =6m and x=12m, that 15
(0354 + 0707)/(12 - 6) =035/x",x' =2m,sox =6 + 2 = 8m.
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Draw the influence line for the force in member CG of the bridge
truss shown in Fig. 6-25a4.

Fee
A
Ry F(;c C
2 8 . e ——
121 1
18] 0
2% | 0 M

1
(a) (b) (c)

Fig. 6-25

SOLUTION

Tabulate Values. A table of unit-load position at the joints of the
bottom cord versus the force in member CG is shown in Fig. 6-25b.
These values are easily obtained by isolating joint C, Fig. 6-25¢. Here
it is seen that CG is a zero-force member unless the unit load is
applied at joint C, in which case F; = 1 (T).




Influence Line. Plotting the tabular data and connecting the points
yiclds the influence line for member CG as shown in Fig. 6-254. In
particular, notice that when the unit load is at x = 9 m, the force in
member CG is F; = 0.5. This situation requires the unit load to be
placed on the bridge deck berween the joints. The transference of this
load from the deck to the truss is shown in Fig. 6-25¢. From this one
can see that indeed F; = 0.5 by analyzing the equilibrium of joint C,
Fig. 6-25f. Since the influence line for CG does not extend over the
entire span of the truss, Fig. 6-25d, member CG is referred to as a

secondary member.,
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EXAMPLE |6.17

In order to determine the maximum force in each member of the
Warren truss, shown in the photo. we must first draw the influence
lines for each of its members. If we consider a similar truss as shown
in Fig. 6-26a, determine the largest force that can be developed in
member BC due to a moving force of 25 k and a moving distributed
load of 0.6 k/ft. The loading is applied at the top cord.

B & 8 - x | Fpc

ha 4 | p c D. E = 78 (1)

|— 20 ft —}— 20 ft —— 20 ft —— 20 ft —-! g 8.22'3/
80| 0

(b)

a
(@) Fig. 6-20




SOLUTION

Tabulate Values. A table of unit-load position x at the joints along
the top cord versus the force in member BC is shown in Fig. 6-26h.
The method of sections can be used for the calculations. For example,
when the unit load is at joint 7 (x = 20 ft), Fig. 6-26a. the reaction E,

: : . . : 60 f
is determined first (£, = 0.25). Then the truss is sectioned through o l
BC, IC, and HI, and the right segment is isolated, Fig. 6-26¢. One I - SN BT
obtains Fg- by summing moments about point /7, to eliminate F;; and F"'\&L?R & H;H\-ZNMLI 15 ft
F;c. In a similar manner determine the other values in Fig. 6-265b. Fi q—: e “—'-T. 0
Influence Line. A plot of the tabular values yields the influence line, y 025
Fig. 6-26d. By inspection. BC is a primary member. Why? L2 =0 _}Z 5 il?h: :Eﬁﬂm‘ =t
Concentrated Live Force. The largest force in member BC occurs )
when the moving force of 25 k is placed at x = 20 ft. Thus,

Fge = (L00)(25) = 250k Fye

1

Distributed Live Load. The uniform live load must be placed over V\
the entire deck of the truss to create the largest tensile force in BC.* "
Thus. 20 &0

mfluence line for Fy-

Fge = [1(80)(1.00)]0.6 = 240k it

Total Maximum Force.
(Far)mx = 290k + 240k = 490k Ans.

*The largest tensile force in member GB of Example 6-15 is created when the
distributed load acts on the deck of the truss from x = 0 lo x = 8m, Fig. 6-244.




6.6 Maximum Influence at a Point due
to a Series of Concentrated Loads

Once the influence line of a function has been established for a point in
a structure. the maximum effect caused by a live concentrated force 1s
determined by multiplying the peak ordinate of the influence line by the
magnitude of the force. In some cases, however, several concentrated
forces must be placed on the structure. An example would be the wheel

loadings of a truck or train. In order to determine the maximum effect in
this case, either a trial-and-error procedure can be used or a method that

is based on the change in the function that takes place as the load is
moved. Each of these methods will now be explained specifically as it
applies to shear and moment.



Shear. Consider the simply supported beam with the associated
influence line for the shear at point € in Fig. 6-27a. The maximum
positive shear at point C is to be determined due to the series of
concentrated (wheel) loads which move from right to left over the beam.
The cntical loading will occur when one of the loads 1s placed just o the
right of point C, which 15 coincident with the positive peak of the
influence line. By trial and error each of three possible cases can
therefore be mvestigated, Fig. 6-275. We have

Case 1: (Vo) = 1(D.75) + 4(0.625) + 4(0.5) = 5.25k
Case2: (V) = 1(—0.125) + 4(0.75) + 4(0.625) = 5.375k
Case 31 (V) = 1(0) + 4(—0.125) + 4(0.75) = 2.5k

1k 4k 4k
4 P Y
C
I——lﬂft i 30 ft i Sft 5h
Vi 075
o 40 =
~0.25

influence line for V.

fa)
Fig. 6-27



Case 2, with the 1-k force located 57 ft from the left support, vields the
largest value for V- and therefore represents the critical loading.
Actually investigation of Case 3 is unnecessary, since by inspection such
an arrangement of loads would yield a value of (V)5 that would be less

than (V).
1k 4k 4k . 1k 4k 4k \
A I
c | : E cq.
i | B
10 f TR B T Case 3
- Case 1 0.75
Pt ”.Tﬁ u‘ﬁzﬁ lrlrf._ E
5
10 15 20 40 o BF g J
i ] —0.25
—1.25
) (b)
Fig. 6-27
| | | ‘ A
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When many concentrated loads act on the span, as in the case of the
E-72 load of Fig. 1-11, the trial-and-error computations used above can
be tedious. Instead. the critical position of the loads can be determined in
a more direct manner by finding the change in shear, AV, which occurs
when the loads are moved from Case 1 to Case 2, then from Case 2 to
Case 3, and so on. As long as each computed AV 1s positive, the new
position will yield a larger shear in the beam at C than the previous
position. Each movement is investigated until a negative change in shear 1s
computed. When this occurs, the previous position of the loads will give
the critical value. The change in shear AV for a load P that moves from
position x, to x, over a beam can be determined by multiplying P by the
change in the ordinate of the influence line, that is, (v, — v,). If the slope
of the influence line is s, then (v. — y;) = s{x; — x;), and therefore

AV = Ps(x, — x3)

Sloping Line =)

If the load moves past a point where there is a discontinuity or “jump”
in the influence line, as point € in Fig. 6-27a, then the change in shear 1s
simply

ﬂ"’r = P[Jﬂ"g = _}"1}

e (6-2)




The girders of this bridge must resist the
maximum moment caused by the weight of
this jet plane as it passes over it.

Moment. We can also use the foregoing methods to determine the
critical position of a series of concentrated forces so that they create the
largest internal moment at a specific point in a structure. Of course. it is
first necessary to draw the influence line for the moment at the point and
determine the slopes s of its line segments. For a horizontal movement
(x» — x;) of a concentrated force P, the change in moment, AM, is
equivalent to the magnitude of the force times the change in the
influence-line ordinate under the load, that is,

AM = Ps(x, — xy1)

Sloping Line (6=2)

As an example, consider the beam, loading, and influence line for the
moment at point C in Fig. 6-29a. If each of the three concentrated forces
is placed on the beam, coincident with the peak of the influence line, we
will obtain the greatest influence from each force. The three cases of
loading are shown in Fig. 6-295. When the loads of Case 1 are moved 4 ft
to the left to Case 2, it i1s observed that the 2-k load decreases AM, -,
since the slope (7.5/10) is downward, Fig. 6-29a. Likewise, the 4-k and
3-k forces cause an increase of AM,_,, since the slope [7.5/(40 — 10)] is
upward. We have



AM_,=—2 (”){4;+{4+3}( i3 ){4}-1[![-: - ft

Since AM,_, is positive, we must further investigate moving the loads
6 ft from Case 2 to Case 3.

7.5 )
AM, .= —(2 + 4}( ){m 4 3(4[' ﬂ){-ﬂ} = —225k-fi

Here the change is negative. so the greatest moment at € will occur when
the beam is loaded as shown in Case 2, Fig. 6-29¢. The maximum moment
at C 1s therefore

(M.),... = 2(45) + 4(7.5) + 3(6.0) = 57.0k- ft



2k 4k 3k
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(b)
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Fig. 6-29




EXAMPLE }6.18

Determine the maximum positive shear created at point B in the beam
shown in Fig. 6-30a due to the wheel loads of the moving truck.

10k

4k 9k 15k

(a)
Fig. 6-30
SOLUTION
The influence line for the shear at B is shown in Fig. 6-305.
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3-ft Movement of 4-k Load. Imagine that the 4-k load acts just to
the right of point B so that we obtain 1ts maximum positive influence.
Since the beam segment BC1s 10 fi l{'ll'lﬂf, the 10-k load is not as yet on
the beam. When the truck moves 3 ft to the left, the 4-k load jumps
downward on the influence line 1 umt and the 4-k,9-k, and 15-k loads
creale a positive increase in AV, since the slope is upward to the left.
Although the 10-k load also moves forward 3 ft, it is still not on the
beam. Thus,

0.5

AV =4(—1) + (4 + 9 + 15;( 0

)3 = +02k

&6-ft Movement of 9-k Load. When the Y-k load acts just to the nght
of B, and then the truck moves 6 ft to the left. we have

AVe=9(-1)+ (4 + 9 + 15;(” ){m + 11}(” ){4; = 114k

Note in the calculation that the 10-k load only moves 4 {t on the beam.




6-ft Movement of 15-k Load. If the 15-k load is positioned just to
the right of B and then the truck moves 6 ft to the left, the 4-k load
moves only 1 {t until it is off the beam, and likewise the 9-k load moves
only 4 ft until it 1s off the beam. Hence,

0.5 0.5 0.5
AVg = 15(—1) + 4(ﬁ)(1} + ﬂ(ﬁ)m} 4015 4 lﬂj(ﬁ){ﬁ}

= =55k

Since AV 1s now negative, the correct position of the loads
occurs when the 15-k load is just to the right of point B, Fig. 6-30c.
Consequently,

(V 8)max = 4(—0.03) + 9(—02) + 15(0.5) + 10(0.2)
=73k Ans.




In practice one also has to consider motion of the truck from left
to right and then choose the maximum value between these two
situations.

4k 9k 15k 10k

.
!
—6 —+—ﬁft i
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EXAMPLE |6.19

Determine the maximum positive moment created at point B in the
beam shown in Fig. 6-31a due to the wheel loads of the crane.

5 kN

S kN

4 kN

b

i

\\\J x
c —0.8
| influence line for M
| 2m

(b)

Fig. 6-31




SOLUTION
The influence line for the moment at B is shown in Fig. 6-315.

2-m Movement of 3-kN Load. If the 3-kN load is assumed to act at
B and then moves 2 m to the right, Fig. 6-315, the change in moment is

AM, = -3(1 20)(2) (1 20)(2) = 720kN-m

Why is the 4-kN load not included in the calculations?

3-m Movement of 8-kN Load. If the 8-kN load is assumed to act at
B and then moves 3 m to the right, the change in moment is

AM, = -~(120)(3) B 8(120>(3 (1.220)(2)
= —840kN-m

Notice here that the 4-kN load was initially 1 m off the beam, and
therefore moves only 2 m on the beam.

Since there is a sign change in AM, the correct position of the
loads for maximum positive moment at B occurs when the 8-kN force
is at B, Fig. 6-31b. Therefore,

(Mp)max = 8(1.20) + 3(04) = 108kN-m Anis




Determine the maximum compressive force developed in member
BG of the side truss in Fig. 6-324 due to the right side wheel loads of
the car and trailer. Assume the loads are applied directly to the truss
and move only to the right.

- l 1 X
—-0.625

influence line for Fg

(b)

(a)

Fig. 6-32

SOLUTION
The influence line for the force in member BG is shown in Fig. 6-325.

Here a trial-and-error approach for the solution will be used. Since
we want the greatest negative (compressive) force in BG, we begin as
follows:




1.5-kN Load at Point C. In this case

Fae = L5 KN(=0.625) + 4(0) + zm(yﬂ)[im}

Im
= —(.729 kN

4-kN Load at Point C. By inspection this would seem a more
reasonable case than the previous one.

—0.625
6 m

Fpe = 4kN(—0.625) + 1.5 kN(
= —2.50 kN

)(4 m) + 2 kN(0.3125)

2-kN Load at Point C. In this case all loads will create a compressive
force in BC.

—0.625 —0.625
5 —0.625 —er
Fpe=2kN( D.ﬁl}+4kN( i ){3m1+1.5k1~:( e )[1111}

= —2.006 kN Ans

Since this final case results in the largest answer, the cnitical loading
occurs when the 2-kN load is at C.




b

Vain

Fig. 6-33

Fig. 6-34

6.7 Absolute Maximum Shear and Moment

In Sec, 6-6 we developed the methods for computing the maximum shear
and moment at a specified point in a beam due to a series of concentrated
moving loads. A more general problem involves the determination of
both the location of the point in the beam and the position of the loading
on the beam so that one can obtain the absolute maximum shear and
moment caused by the loads. If the beam is cantilevered or simply
supported, this problem can be readily solved.

Shear. For a cantilevered beam the absolute maximum shear will
occur at a point located just next to the fixed support. The maximum
shear is found by the method of sections, with the loads positioned
anywhere on the span, Fig. 6-33.

For simply supported beams the absolute maximum shear will occur just
next to one of the supports. For example, if the loads are equivalent, they
are positioned so that the first one in sequence is placed close to the
support, as in Fig. 6-34.



Moment. The absolute maximum moment for a cantilevered beam
occurs at the same point where absolute maximum shear occurs, although
in this case the concentrated loads should be positioned at the far end of
the beam, as in Fig. 6-35.

For a simply supported beam the critical position of the loads and the
associated absolute maximum moment cannot, in general, be determined
by ispection.

Fig. 6-33

A,

 mrrormn 1

(b)




Envelope of Maximum Influence-Line Values. Rules or
formulations for determining the absolute maximum shear or moment
are difficult to establish for beams supported in ways other than the
cantilever or simple support discussed here. An elementary way to
proceed to solve this problem, however, requires constructing influence
lines for the shear or moment at selected points along the entire length
of the beam and then computing the maximum shear or moment in the
beam for each point using the methods of Sec. 6-6. These values when
plotted yield an “envelope of maximums,” from which both the absolute
maximum value of shear or moment and its location can be found.
Obviously, a computer solution for this problem is desirable for
complicated situations, since the work can be rather tedious if carried out

by hand calculations.



EXAMPLE )6.21

Determine the absolute maximum moment in the simply supported
bridge deck shown in Fig. 6-37a.

SOLUTION
The magnitude and position of the resultant force of the system are
determined first, Fig. 6-37a. We have




IFR =45k
. :"-ll 4 Fy = 2F: Fp=2#%15%1 =45k
i I
: ﬁ" lf My = SMe  45% = 15(10) + 1(15)
A - : x = 6.67 ft
..... gl g
ﬁ L | f Let us first assume the absolute maximum moment occurs under
A_.-l 6671 6670 N| Sgt| B, the 1.5k load. The load and the resultant force are positioned
1.67 ft equidistant from the beam’s centerline, Fig. 6-37b. Calculating A,

first, Fig. 6-37b, we have

|

15 ft , 15 ft —=

(+3M =0, —A(30) +45(1667)=0 A, =250k
(b)

Now using the left section of the beam, Fig. 6-37¢, yields
L +EMs =0;  —250(16.67) + 2(10) + Mg =0
Mg=217k-ft

2k 1.5k

|}

6670t —100— Vs

ic)

Fig. 6-37




There i1s a possibility that the absolute maximum moment may
occur under the 2-k load.since 2k > 1.5k and F;; is between both2 k
and 1.5 k. To investigate this case, the 2-k load and F, are positioned
equidistant from the beam’s centerline. Fig. 6-37d. Show that
A, = L.75k as indicated in Fig. 6-37¢ and that

M; =204 k-ft
By comparison, the absolute maximum moment 1s
Ms=21.7k-ft Auns,

which occurs under the 1.5-k load, when the loads are positioned on
the beam as shown in Fig. 6-375.
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19.62 kN

2m

1m

6.54 kN

(a)

L}
13.08 kN

The truck has a mass of 2 Mg and a center of gravity at G as shown in

- Fig. 6-384. Determine the absolute maximum moment developed in

the simply supported bridge deck due to the truck’s weight. The bridge

- has a length of 10 m.

#78 SOLUTION
<2  Asnoted in Fig. 6-384, the weight of the truck, 2(10°) kg(9.81 m/s*) =
= 19.62kN, and the wheel reactions have been calculated by statics.
% Since the largest reaction occurs at the front wheel, we will select this

wheel along with the resultant force and position them equidistant from
the centerline of the bridge, Fig. 6-3856. Using the resultant force rather
than the wheel loads, the vertical reaction at B is then

(+ZM, =0 B,(10) — 19.62(4.5) = 0
B, = 8.829kN

The maximum moment occurs under the front wheel loading. Using
the right section of the bridge deck, Fig. 6-38¢, we have

(+2ZM, = 8.829(45) — M, =0
M, =397kN+m Ans.
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