

Coefficient of Friction

Purpose: To measure the coefficients of static friction between a wooden block and a glass plane.

Theory: Friction is a force that resists the relative motion of two objects in contact, caused by the irregularities of the surfaces coming into contact and colliding with each other (Figure 1). Friction is a resistive force occurs because an object interacts with either the surface it lays upon, the medium it is

Figure 1 contained in, or both.

For most purposes, you can use the formula to calculate friction:

$$
f=\mu N
$$

Where $\boldsymbol{\mu}$ is the coefficient of friction, and \boldsymbol{N} is the "normal" force describes the force that the surface of an object is resting on.

For a still object on a flat surface, the friction force when the block begins to slide must exactly oppose the tension force due to gravity $(F=m g)$.

Figure 2

There are different forms of frictional forces that occur. When friction acts on an object that is at rest, we refer to the frictional force as static friction. An object that is in motion is subject to kinetic or dynamic friction. Fluid friction occurs between fluid layers that are moving relative to each other. This internal resistance to flow is named viscosity.

Important things to know about friction:

1. Friction is always parallel to the contact surface and is in the opposite direction of the force causing the motion.
2. Static friction is always greater than kinetic friction. This is due to inertia (An object at rest tends to stay at rest while an object in motion tends to continue moving).
3. Friction increases as the force between two surfaces increases. Friction is proportional to the normal force, but not to the area in contact.

Static friction

When you want to push a heavy object, static friction is the force that you must overcome in order to get it moving. The magnitude of the static frictional force, $\boldsymbol{f}_{\boldsymbol{s}}$, satisfies:

$$
f_{s} \leq \mu_{s} N
$$

where $\boldsymbol{\mu}_{s}$ is the coefficient of static friction, a dimensionless constant that depends on the object and the surface it is laying upon.

From this equation it is clear that the maximum force of static friction, $\boldsymbol{f}_{\boldsymbol{s}, \max }$, that can be exerted on an object by a surface is:

$$
f_{s, \max }=\mu_{s} N .
$$

Once the applied force exceeds this threshold the object will begin to move.

Equipment: Glass plane, Wooden block, Masses, Balance, Pulley and Thread.

Procedure:

1. Measure the mass of the wooden block with the balance and calculate it's weight in Newtons.
2. Tie a string to the supplied wooden block and the hanger as shown in Figure 3.

Figure 3
3. Add masses to the hanger until the block begins to slide. (Take care to gently place small increments of masses just before the block begins to move). At this point, the tension which equals $\boldsymbol{m g}$ is exactly equal to $\boldsymbol{\mu} \boldsymbol{N}$, the maximum frictional force.
4. Place additional masses on the block to change the total mass \mathbf{M} of the block, and determine the corresponding mass \mathbf{m} required to slide the block.
5. Determine the mean force. The force needed to pull the block is your frictional force (f) and the combined weight of the block and mass is your normal force (\mathbf{N}).

$\mathrm{M}(\mathrm{kg})$	$\mathrm{N}(\mathrm{N})$	$\mathrm{m}(\mathrm{kg})$	$f(\mathrm{~N})$

6. Plot a graph with the frictional force (f) on the y -axis and the normal force (N) on the x-axis.
7. Make the "best fit line" to obtain the slope of this line, which is equal to the coefficient of static friction between the two surfaces $(\boldsymbol{\mu})$.

Question of the experiment:

Q1/Define

- The coefficient of friction,
- Static friction,
- Viscosity

Q2/ A 7 kg box on a horizontal table is pushed by a horizontal force of 15 N . If the coefficient of friction is 0.4 , will the box move?

Q3/ A 400-gram package lying on a horizontal surface is attached to a horizontal string which passes over a smooth pulley. When a mass of 300 grams is attached to the other end of the string, the package is on the point of moving. Find μ, the coefficient of friction.

Hooke's Law

Purpose: Investigate the relationship between the extension (elongation) of a spring and the force applied to that spring, and determine the spring constant for an individual spring.

Theory: Hooke's law relates the force pulling or pushing on a spring (or other elastic material) to the amount of the spring stretches or compresses.

The force exerted by a spring to restore itself to its natural length is referred to as the restoring force. When a spring is stretched (as in this experiment) the restoring force is exerted inward; if a spring is compressed, the restoring force is exerted outward.

Mathematically, the restoring force of a spring is expressed as:

$$
F=-k x
$$

where F : restoring force,
k : proportionality constant, called the spring constant,
x : distance the spring which has been stretched or compressed.
The negative sign indicates that the restoring force acts in the direction opposite of the displacement direction.

When a mass, m, is suspended from a spring and the system is allowed to reach equilibrium, as shown in Figure 1, Newton's Second Law tells us that: the magnitude of the spring force equals the weight of
the body, $F=m g$. Therefore, if we know the mass of a body at equilibrium, we can determine the spring force acting on the body.

Figure 1
Depending on material, length, diameter, and number of coils, each spring has its unique spring constant. The greater the spring constant, the stiffer the spring (the more difficult it is to stretch it or compress it).

The elastic limit is the maximum extension to which a spring can be stretched without permanent deformation and still return to its original shape. If a spring is stretched beyond its elastic limit, it will not return to its original shape and will remain deformed.

On a force versus elongation graph, the elastic limit will show up as the point where the slope of the line changes or where the straight-line portion of the graph ends.

Commonly, a Hooke's law experiment is conducted by adding increasing masses to a spring and recording the cumulative stretch (elongation) of the spring.

Equipment:

Helical spring, Support stand and hook, Mass pan, Various slotted masses, Meter ruler.

Procedure:

1. Set up the equipment as shown in the diagram (Figure 2).

Figure 2
2. Suspend the spring from a hook and measure the original length of the spring using a ruler (calibrate the marker so that it reads zero when no masses are attached to the spring).
3. Attach a known weight to the spring slowly, then measure the new length of the spring which give us the extension (elongation) of the spring Δx directly (because the original length is marked on zero).
4. Continue adding weight before spring breaking or nearly stops stretching with added force.
5. Then tabulate all the data as given below.

$\mathrm{M}(\mathrm{kg})$	$\mathrm{F}(\mathrm{N})$	$\Delta x(\mathrm{~cm})$	$\Delta x(\mathrm{~m})$

6. Plot graph with the force of weight on the y-axis and the extension on the x -axis. The fact that the graph is a straight line means that the system obeys Hooke's law.

The gradient of line of best fit will be the spring constant of the coil spring (in Newtons per meter).

Question of the experiment:

Q1/ Define:

- Hoock's law,
- Elastic region,
- Newton's second law,
- Spring constant
- and Restoring force.

Q2/ What is the magnitude of the force required to stretch a 20 cm -long spring, with a spring constant of $100 \mathrm{~N} / \mathrm{m}$, to a length of 21 cm ?

Q3/ How much force is needed to pull a spring with a spring constant of $20 \mathrm{~N} / \mathrm{m}$ a distance of 25 cm ?

Erace
 the molecules and atoms.
However, applying force would lead to the displacement of these molecules from fixed points. ure.
The distinguishing aspect of these material is its elastic and

So there are, Elastic behavior (response)

Plastic behavior (response).
Dr. Huda Masood AL-Zacko
ALNOOR UNIVERSITY COLLEGE

* When the load (force) is firstly applied, a material is
deformed by a change in shape or length.
And when the load is removed, a material:

Dr. Huda Masood AL-Zacko
ALNOOR UNIVERSITY COLLEGE
Elastic limit is the point at which the material does not
return to its original length when the load is removed.
starts to curve).
> ic deformation occurs in
> the 'elastic region' of the graph. The extension is proportional to the force applied to the material (straight line).
Plastic deformation occurs in the 'plastic region' of the graph. エวธึUOI ou S! UOISUӘ!Xว วЧL proportional to the force applied to the material (graph
The relationship between the load applied to a structure and
the resulting deformation is called a load-deformation
curve.
It is generally preferable to convert:
load into stress (force per unit
area),
deformation into strain
(measure of deformation),
and thereby re-plot the
relationship as a stress- strain
curve, which is also divided into
two regions elastic and plastic
region.
- The point where the deformation changes from being elastic to at least partially plastic is the yield point, which also marked by elasticlimit.

Within deformation
proportional force (load) proportional relationship Hooke's law, which is given by: Young's modulus or the
$\frac{\text { UIE.ITS }}{\text { SSว.İS }}=$
The yield point represents the value of stress above which
the strain will begin to increase rapidly.
The slight increase in stress above the yield point will result
in permanent deformation this behavior is yielding.
The ultimate strength is the
maximum value of stress on
the stress- strain diagram.
Failure or the fracture
point or the break point,
which is the point at which
the material fails and
separates into two pieces.

[^0]Q1- A load of 100 kg is suspended by a wire of length 1 m and
cross sectional area $0.1 \mathrm{~cm}^{2}$. The wire is stretched by 0.2 cm.
Calculate the stress, and the strain in the wire.

Given,	$\mathrm{g}=9.8 \mathrm{~m} / \mathrm{s}^{2}$

\[\)| $\boldsymbol{\sigma}$ | $=\frac{F}{A}$ |
| ---: | :--- |
| | $=\frac{(100 \mathrm{~kg})\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)}{0.1 \times 10^{-4} \mathrm{~m}^{2}}$ |
| | $=9.8 \times 10^{7} \mathrm{Nm}^{2}$ |

\]

\[\)| ε | $=\frac{\Delta L}{L}$ |
| ---: | :--- |
| | $=\frac{0.2 \times 10^{-2} \mathrm{~m}}{1 \mathrm{~m}}=0.2 \times 10^{-2}$ |

\]

Q2- A man leg can be thought of as a shaft of bone 0.3 m
 weight, by how much is his leg shortened?
$\varepsilon=\Delta L / L \ldots \quad \Delta L=\varepsilon L$
$u_{\mathrm{s}-0 I} \times 6^{\circ} \varepsilon=w \varepsilon^{\prime} 0 \times{ }_{\star-0 I} \times \varepsilon^{\prime} \tau=$

 of shortening when all of the body weight of 700 N is supported on this leg?
$(0.3 \mathrm{~m})\left(7 \times 10^{2} \mathrm{~N}\right)$
$\Delta L=\frac{L F}{A Y}=\frac{(0.3 \mathrm{~m})\left(7 \times 10^{2} \mathrm{~N}\right)}{\left(3 \times 10^{-4} \mathrm{~m}^{2}\right)\left(1.8 \times 10^{10} \mathrm{~N} / \mathrm{m}^{2}\right)}=3.9 \times 10^{-5} \mathrm{~m}$
Tooth Failure
Scientist measured the stress-strain behavior of dentine
under compression for the premolar teeth.
The maximum force measured at the occlusal surface of $1^{\text {st }}$
premolar is 650 N .
If the area of contact is $\sim 10 \mathrm{~mm}^{2}$, so the stress:

$$
\boldsymbol{\sigma}=\frac{F}{A}=\frac{650 \mathrm{~N}}{10 \mathrm{~mm}^{2}}=65 \frac{\mathrm{~N}}{\mathrm{~mm}^{2}}
$$

If we bite a hard cherry stone or kernel of popcorn, the
area of contact may be as small as $1 \mathrm{~mm}^{2}$; then the
compressive stress is:

$$
\boldsymbol{\sigma}=\frac{F}{A}=\frac{650 \mathrm{~N}}{1 m m^{2}}=650 \frac{\mathrm{~N}}{\mathrm{~mm}^{2}}
$$

Under these condition, the tooth would fail.
What Are Brittle and Ductile Meant?
, Brittle and Ductile are the two important material properties that are used to describe the physical and chemical properties of materials.
What Are Brittle and Ductile Meant?
What Are Brittle and Ductile Meant?
, Brittle and Ductile are the two important material
Brittleness is one of the material properties where the breaking of the material will take place without any deformation.
Ductility is the material property where
the deformation will take place before the material gets damaged.
The materials that possess the property of brittleness are called Brittle Materials.
The materials that possess the property of ductility are called Ductile Materials. D. Huda Masood A--Zakko
ALNOOR UNIVERSITY COLLEGE
Brittle Materials like Cast Iron, Ceramics, Glass, Concrete, etc.
Ductile Materials like Aluminum, Steel, Platinum, lead, etc.
Brittle materials have high Young's Modulus, while ductile
materials has low value.
The brittle materials will break when we try to bend it,
while the ductile materials cannot
break even they are bent.
The breaks in brittle materials
will be occurred without any
sign of cracks or breaks, while
we can observe the cracks in
the ductile materials before
it fails.

Levers in Dentistry

- It is obvious that different 32 permanent adult teeth have

different functions.

- The incisors and canine have single cutting or biting
edges.
- Behind the canine are the $1^{\text {st }}$ and $2^{\text {nd }}$ premolars, followed
by three molars used for chewing or grinding food on occlusal surface. The masseter muscle is one of the
primary muscles of mastication. - It's main functions to provides
the masticatory forces for biting
and chewing.

Levers

Levers in Teeth:

The masseter's muscle elevate the mandible against the maxilla, so levers play an extremely important role in occlusion of our teeth in biting and chewing process. There are two different classes of lever in our jaw.
Visualize that, food is the load, and our jaw joint is the fulcrum.

> When you bite using your front teeth, such as munching a bite out of an apple, your lower jaw acts as a third class lever.
When you crunch on the apple with your molars, your lower jaw now acts as a second class lever.
Dr. Huda Masood AL-Zacko
ALNOOR UNIVERSITY COLLEGE

[^1]
When we bite an apple:

The Mechanical Advantage of Lever

[^2]Levers in Dental Instruments
 force to rotate it. Finally, the socket will use to remove the tooth.

In elevators: the lever is the first class, so the handle on one side of fulcrum must be longer than the load arm on opposite side to get maximum MA of extraction.
Dr. Huda Masood AL-Zacko
ALNOOR UNIVERSITY COLLEGE

Dr. Huda Masood AL-Zacko
ALNOOR UNIVERSITY COLLEGE
By:
Dr. Huda Masood AL-Zacko
Department of Dental Technology

1. Gravitational force It is weak force but very long-ranged. It is always attractive. - The law of universal gravitation states that: "there is a force of attraction between any two objects", "Our weigh is due to the attraction between the earth and our bodies". 2. Weak nuclear force: It is responsible for radioactive decay. (P) © It is involved with electron (beta) decay from the nucleus. - It has a very short range and it is very weak. Dr. Huda Masood AL-Zacko ALNOOR UNIVERSITY COLLEGE \qquad	

. Electrical force

The are two types of problems involving forces： those where the body is in equilibrium（statics），
those where the body is accelerated（dynamic）．

1－Statics Force

When objects are statics they are in a state of equilibrium
\｛ remains in its state of rest or motion \}.
＂the sum of the forces in any direction is equal to zero＂\＆ ＂the sum of the torque about any axis equal to zero＂．
In order for a two force member to be in equilibrium，the two forces must：

a）have the same magnitude．

ne．（c）be opposite in sense．
Dr．Hud Mason Al－zacko
ALNOOR UNIVERITY COLLEGE

[^3]
Biting Process
The incisors act like knives in the biting
process. You can imagine that by visualize a
dull knife on an apple:
The teeth behave like the knife, and when the
incisors first make contact with the apple, the
stress $\left(\sigma=\frac{F}{A}\right)$ is very large because of:
the large applied force (assume 200 N);
the small area of the edge of the incisor
teeth (perhaps $1 \mathrm{~mm}^{2}$).
This applied force leads to a stress of:
$\sigma=200 \mathrm{~N} / \mathrm{mm}^{2}$

Retarding Force

Static friction, between two surfaces at rest.
We distinguish two types of friction:
Kinetic friction, between two surfaces one moves against the other.

The maximum force of friction f is : $f=\mu N$
μ : is the coefficient of friction between the two surfaces.

- The value of μ depends upon the two materials in contact, and independent of the surface area.

Frictional forces between fluids known as viscous forces.

$$
\begin{aligned}
& \text { Dr. Huda Masood AL-Zacko } \\
& \text { ALNOOR UNIVERSITY COLLEGE }
\end{aligned}
$$

A body moving through a liquid or gas is retarded by the
force of viscosity exerted on it by the fluid.
The viscosity of a fluid is a measure of the internal friction opposing the deformation or flow of the fluid.

- When a solid sphere is moving in a liquid, a viscous drag force will be exerted on the sphere.

$$
\begin{aligned}
& \text { When a steel ball is dropped into a fluid sample the } \\
& \text { gravitational force on the ball }\left(F_{w}=m g\right) \text { is larger than } \\
& \text { the buoyant force } F_{b} \text {. } \\
& \text { The net driving force } \mathrm{F} \text { on the ball is: } \\
& \qquad F=F_{w}-F_{b}=(\sigma-\rho)\left(\frac{4}{3} \pi r^{3}\right) g \\
& \text { When } F=F_{d} \text {, } \\
& \text { the ball stops accelerating } \\
& \text { and falls with a constant speed, which is called the } \\
& \text { terminal speed. } \\
& \text { A related medical test is the determination of the } \\
& \text { hematocrit, the percent of red blood cells in the blood. }
\end{aligned}
$$

Stocke's law utilized in test that can reveal
inflammatory activity in your body, this test
known as Sed Rate, or Erythrocyte
Sedimentation Rate (ESR).
When your blood is placed in a tall, thin
tube, red blood cells gradually settle to the
bottom.
Inflammation can cause the cells to clump,
and these clumps are denser than individual
cells, so they settle to the bottom more
quickly.
High rate of settlement indicating high
inflammation.
1

Heat and the First Law of Thermodynamics Physical Basis of Heat and Temperature
Physical Basis of Heat and remperature
Matter is composed of molecules that are in motion, in a gas or liquid or even in a solid. This movement means that: "they have kinetic energy (K.E.)" which related to the temperature
by direct proportional.

- So to increase the temperature of a gas it is necessary to increase the K.E. of its molecules.

The energy that transferred causing the temperature rise is

[^4]Temperature Scales

Examples:

Thermodynamics

- Thermodynamics can be defined as: the study of energy, energy transformations and its relation to matter.
" "Thermodynamics" is derived from two Greek words: "thermes" and "dynamikos"
which means heat and powerful.
the
 work and temperature, and their relation to energy, radiation and physical properties of matter.

Dr. Huda Masood AL-Zacko
ALNOOR UNIVERSITY COLLEGE
Thermodynamics studies conversion of energy from one form to the other (chemical to heat, heat to mechanical,..... est.).

- The field of study of thermodynamics is based on three laws of thermodynamics and Zeroth's law.
- Zeroth's Law of Thermodynamics states that if two bodies are in thermal equilibrium with third body, then they are in thermal equilibrium with each other.

For example, if temperature of A is equal to temperature of C , and temperature of B is also equal to temperature of C , then temperature of A is equal to that of B.

 considered as the stored sum of the kinetic and potential energy of its atoms and molecules.
U can be positive when heat is added to the system and/or work is done on the system.

U can be negative when heat is removed from the system and/or work is done by the system on its surroundings.

Heat (Q) is the energy that is transferred by molecular motion and collisions due to a temperature difference. Q that enters a system can be considered to be positive, while Q exiting a system is negative.
The work (W) of a system is the energy that is transferred general form of mechanical work.
W is negative when energy is lost from the system and consumed by an external system or the surroundings.
W is positive when energy is added to the system and lost
from an external system or the surroundings.

Examples	System is positive	System is negative
A steam engine produces work.	energy is added to surroundings from the engine.	energy is lost from the engine to the surroundings
Refrigerators consume work.	energy is added to refrigerators from the environment.	energy is lost from the environment

Examples:

 Q1- Calculate the change in the system's internal energy if
3000 J of heat is added to a system and a work of 2500 J is done by the system.

$$
\mathbf{W}
$$

Q2- What is the change in the internal energy of the system if 2000 J of heat leaves the system and 3000 J of work is done on the system?

$$
=3000-2500=500 \mathrm{~J}
$$

$\Delta U=Q-W$
f000 ${ }^{-}=\left(000 \varepsilon^{-}\right)-000 \tau^{-}=$

Dr. Huda Masood AL-Zacko
ALNOOR UNIVERSITY COLLEGE

(a) 1500 J of heat are added to the gas and the gas does no
work and no work is done on the gas.

$M-\partial=\Omega \nabla$ $\begin{aligned} &$\[

\]$=1500 \mathrm{~J}-0=1500 \mathrm{~J} \\ & \text { (b) } 1500 \mathrm{~J} \text { of work are done on the gas and the gas does no }\end{aligned}$

 $\Delta U=\mathrm{Q}-\mathrm{W}$
$\operatorname{fOOSI}=($ COOSI -$)-0=$
Dr. Huda Masood AL-Zacko
ALNOOR UNIVERSITY COLLEGE
Q5- A gas in a closed container is heated with 50 J of energy,

 system?

$$
\begin{gathered}
M-=\varsigma 0 Z- \\
M-\Upsilon 0 S=\lceil 0 \varepsilon \\
M-\partial=\Omega \nabla
\end{gathered}
$$

$20 \mathrm{~J}=\mathrm{W}$

[^5]mana

Dr. Huda Masood AL-Zacko
ALNOOR UNIVERSITY COLLEGE
There are three types of systems that are frequently used to
describe thermodynamic properties:

1. Open system: can exchange both energy and matter with
its surrounding
2. Closed system: can exchange energy but not matter with
its surrounding
3. Isolated system: that cant exchange neither matter nor
energy.
surrounding
Conservation of Energy

- The total energy is neither increased nor decreased in any
- Energy can be transformed from one form to another, and transferred from one object to another, but the total amount remains constant.
- So in an isolated system such as the universe, if there is a loss of energy in some part of it, there must be a gain of an equal amount of energy in some other part of the universe.
 from an initial state to a final state, the change in energy is zero,
- $1^{\text {st }}$ Law of Thermodynamics: Energy can neither be created
nor be destroyed, it can only be transferred from one form to another.
$2^{\text {nd }}$ Law of Thermodynamics: The entropy of any isolated system always increases.
3rd Law of Thermodynamics: The entropy of a system approaches a constant value as the temperature approaches absolute zero.

$$
\begin{aligned}
& \text { Entropy is the measure of the number of possible arrangements } \\
& \text { the atoms in a system can have. } \\
& \text { Enthalpy is the measurement of energy in a thermodynamic } \\
& \text { system. }
\end{aligned}
$$

> Dr. Huda Masood AL-Zacko
ALNOOR UNIVERSITY COLLEGE

Example: Heat engines

Example:
Q- A gas in a closed container is heated with 50 J of energy, causing the lid of the container to rise. If the change in energy of the system is 30 J , how much work was done by the system?
For this problem, use the first law of thermodynamics: $\Delta \mathrm{U}=\mathrm{Q}-\mathrm{W}$
We are given the total change in energy and the original amount of heat added.
Using these values, we can get:
$30 \mathrm{~J}=50 \mathrm{~J}-\mathrm{W}$
$-20 \mathrm{~J}=-\mathrm{W}$
$20 \mathrm{~J}=\mathrm{W}$
Dr. Huda Masood AL-Zacko ALNOOR UNIVERSITY COLLEGE

Our "energy accounting" has two types:	
	Kinetic Energy: The energy that an object possesses because its moving. It is defined as: $\mathrm{KE}=\frac{1}{2} M V^{2}$
	where M : is the mass of the object, V : is the magnitude of its velocity.
	Potential Energy: The energy due to an object's position (stored energy) known as potential energy. It is defined as: $\mathrm{PE}=m \boldsymbol{g} Z$
	where m : is the mass,
	z : is the elevation,
	g : is the gravitational acceleration.
-	Dr. Huda Masood AL-Zacko \qquad ALNOOR UNIVERSITY COLLEGE

- Accounting for internal energy leads to a broader statement
of energy conservation.

$\Delta \mathrm{KE}+\Delta \mathrm{PE}+\Delta \mathrm{U}=0$

‘โセ!
 though energy may be converted among these three different forms.

KE

Dr. Huda Masood AL-Zacko
ALNOOR UNIVERSITY COLLEGE
In any given system, if no other forms of energy are
present, so the energy is mechanical energy:

$$
\mathrm{E}=\mathrm{KE}+\mathrm{PE}
$$

$$
\text { Imagine a system consisting of a } 10 \mathrm{~N} \text { ball and Earth. }
$$

above the ground. Because the ball is
above the ground. Because the ball is
energy.

$$
\mathrm{PE}=m g z=10 \mathrm{~N} \times 2 \mathrm{~m}=20 \mathrm{~J}
$$

$\quad \mathrm{PE}=m g z=10 \mathrm{~N} \times 2 \mathrm{~m}=20 \mathrm{~J}$
As the ball falls, it loses PE and gains KE . When the ball is 1 m above Earth's surface:

$P E=10 \mathrm{~N} \times 1 \mathrm{~m}=10 \mathrm{~J}$

Dr. Huda Masood AL-Zacko
ALNOOR UNIVERSITY COLLEGE
What is the ball's kinetic energy when it is at a height of 1 m ?
 isolated because no external forces are acting upon it. Hence, the total energy of the system (E) remains constant at 20 J .
$\mathrm{E}=\mathrm{KE}+\mathrm{PE}$ so $\mathrm{KE}=\mathrm{E}-\mathrm{PE}$
, When the ball reaches ground level: $\begin{aligned} \mathrm{PE} & =0 \\ \mathrm{KE} & =20 \mathrm{~J}\end{aligned}$

Check the velocity of ball

Imax

the ability to transfer heat.

According to thermodynamic systems, heat transfer is defined as "The movement of heat across the border of the system due to a difference in temperature between the коцวзลกоэ

 $\underbrace{\sim}_{\text {Noimanasoo }}$
Heat transfer is the process of
the movement of energy due to a temperature difference. Heat may be transferi conduction,
radiation.
Thermodynamics of Heat Transfer
Introduction

Heat Transfer Methods

1. Conduction: The process of transmission of energy from one particle of the medium to another with the particles being in direct contact with each other. Convection: The movement \dagger Convection: The movement
of fluid molecules from higher temperature regions to higher temperature regions to Radiation is generated by the emission of electromagnetic waves. These waves carry away the energy from the emitting body.

- Pressure on the boundaries of a substance is caused by the collisions of the molecules of the substance with the boundaries of the system.

As molecules hit the walls, they exert forces that try to push the walls outward.

The forces resulting from all of these collisions cause the pressure exerted by a system on its surroundings.

Pressure is a measure of the force (F) exerted per unit area (A) on the boundaries of a substance.
 ${ }_{2} \mathrm{WI} / \mathbf{N} \mathbf{I}=[\operatorname{eosed} \mathbf{I}$ f a substance. Force
$P=F / A$毕皆

 pressure, which is the actual pressure at a given position.

- An instrument that measures pressure by this method is called Manometer: A common type is a U-shape tube containing a fluid that is connected to the pressure to be measured.
- The levels in the arms change until the difference in the $P=\boldsymbol{P}_{o}+\rho g h$
- If the $\left(P<P_{o}\right)$ called negative pressure,
If the $\left(P>P_{o}\right)$ called positive pressure.
วInSSวId วムIl!

Ideal Gas Law

Avogadro's law: States that the volume occupied by an ideal gas is directly proportional to the number of molecules of the gas present in the container.

The relation is given by:

[^6]\[

$$
\begin{gathered}
\text { PV }=\mathrm{nRT} \\
(1 \mathrm{~atm})(19.2 \mathrm{~L})=(\mathrm{n})(0.082)(273 \mathrm{~K})
\end{gathered}
$$
\]

2. What is the temperature of One mole of CH4 gas that
occupies 20L at latm pressure in Kelvin?

$$
\begin{aligned}
\mathrm{PV} & =\mathrm{nRT} \\
\mathrm{~T} & =\mathrm{PV} / \mathrm{nR} \\
\mathrm{~T} & =1 \mathrm{~atm} \times 20 \mathrm{~L} / 1 \mathrm{~mol} \times 0.082 \\
\mathrm{~T} & =244 \mathrm{~K}
\end{aligned}
$$

[^7]Work
In thermodynamics，work performed by a system
is energy transferred by the system to its surroundings，by a
mechanism through which the system can spontaneously
exert macroscopic forces on its surroundings．
where：W：is the work，
F：is the force，
d：is the displacement．
Because $\mathrm{P}=\mathrm{F} / \mathrm{A} \gg \mathrm{F}=\mathrm{PA}$

So：$\quad \begin{aligned} & \mathrm{W}=\mathrm{PA} \mathrm{d} \\ & \mathrm{W}=\mathrm{P} \Delta \mathbf{V}\end{aligned}$
Thermodynamics Processes

эฺтеиイрошәү е јо әธิиечว ＇ssəうo．』d ఫปว» S！әunjo＾Чग！чМ u！әuо ә！！ЧМ ＇ssəうoxdэ！̣xeqos！ ue pә！［eว s！ә．nssord дupısuos

Simple Pendulum

Purpose: To find the gravitational acceleration due to the gravity of a swinging object about a point.

Theory: A simple pendulum is defined to have a point mass (the pendulum bob) suspended by a massless (light) string from some point about which it is allowed to swing back and forth in a place. A simple pendulum can be used to perform the simple harmonic motion (SHM).

In Figure 1 we see that a simple pendulum has a small-diameter bob and a string that has small mass \boldsymbol{m}, which is strong enough not to stretch appreciably. The linear displacement from equilibrium is \boldsymbol{s} (the length of the arc).

The weight $\boldsymbol{m} \boldsymbol{g}$ has two components: $\boldsymbol{m g} \boldsymbol{\operatorname { c o s }} \boldsymbol{\theta}$ along the string, and $\boldsymbol{m g} \boldsymbol{\operatorname { s i n } \boldsymbol { \theta }}$ tangent to the arc. Therefore the net force on the bob is:

- Tangent to the arc and equals $-\boldsymbol{m} \boldsymbol{g} \boldsymbol{\operatorname { s i n }} \boldsymbol{\theta}$, which result in a net force toward the equilibrium position, known as a restoring force.
- While Tension $\left(\boldsymbol{F}_{\boldsymbol{T}}\right)$ in the string exactly cancels the component $\boldsymbol{m g} \boldsymbol{\operatorname { c o s }} \boldsymbol{\theta}$ parallel to the string.

This leaves a net restoring force back toward the equilibrium position at $\theta=0$.

When a simple pendulum is displaced from its equilibrium position, there will be a restoring force that moves the pendulum back towards its equilibrium position. The restoring force is opposite and directly proportional to the displacement \boldsymbol{x} from the equilibrium position, so that it satisfies the relationship:

$$
\begin{equation*}
F=-k x \tag{1}
\end{equation*}
$$

If a pendulum is set in motion so that is swings back and forth, its motion will be periodic. The time that it takes to make one complete oscillation is defined as the period (T). and the motion of the pendulum will be simple harmonic motion and its period can be calculated using the equation for the period of SHM:

$$
\begin{equation*}
T=2 \pi \sqrt{\frac{m}{k}} \tag{2}
\end{equation*}
$$

We should note that for small angles $\left(<15^{\circ}\right)$, $\sin \theta \approx \theta(\sin \theta$ and θ differ by about 1% or less at smaller angles). Thus, the restoring force \boldsymbol{F} is:

$$
\begin{equation*}
F \approx-m g \theta \tag{3}
\end{equation*}
$$

The displacement \boldsymbol{s} is directly proportional to $\boldsymbol{\theta}$. When $\boldsymbol{\theta}$ is expressed in radians, the arc length in a circle is related to its radius (L in this instance) by $\theta=s / L$. Then for small angles the expression for the restoring force is:

$$
\begin{equation*}
F \approx-m g \frac{s}{L} \tag{4}
\end{equation*}
$$

By comparison equation (1) with equation (4), we get: $\boldsymbol{k}=\boldsymbol{m g} / \boldsymbol{L}$. \{The displacement is given by $x=s\}$.

Substituting \boldsymbol{k} value in equation (2), we can find the period of a pendulum for amplitudes less than about 15° :

$$
\begin{equation*}
T=2 \pi \sqrt{\frac{L}{g}} . \tag{5}
\end{equation*}
$$

This result is shows: the only things that affect the period of a simple pendulum are its length and the acceleration due to gravity. By squaring both sides of the equation yields:

$$
\begin{equation*}
T^{2}=4 \pi^{2} \frac{L}{g} \tag{6}
\end{equation*}
$$

which give us the acceleration due to gravity (\boldsymbol{g}).

Equipment: A clamp with stand, A thread, A bob, Vernier caliper, Stop/watch, Meter scale.

Procedure:

1. Set the pendulum apparatus as shown in Figure 2.

2. Measure the length (L) of the thread from the point of suspension to the middle of the bob .
3. Move bob using the hand at an angle not more than 10° and leave it.
4. Count 20 complete oscillations, and read the required time when the 20th oscillation is complete (T_{20}) using a stop/watch.
"The stop/watch is started when the pendulum crosses the equilibrium position to any one side. When it passes the equilibrium position in the same direction the next time it has completed one oscillation".
5. Repeat the experiment for different lengths, and take observation of the time for 20 oscillation for each new length.
6. Tabulated the reading as the table:

$\mathrm{L}(\mathrm{cm})$	$\mathrm{L}(\mathrm{m})$	$\mathrm{T}_{20}(\mathrm{sec})$	$\mathrm{T}=\mathrm{T}_{20} / 20(\mathrm{sec})$	$\mathrm{T}^{2}\left(\mathrm{sec}^{2}\right)$

7. Plot a graph of T^{2} on the x-axis against L on the y-axis.
8. Make the "best fit line" to obtain the slope of this line.
9. The magnitude of slope must multiplied by $4 \pi^{2}$ to calculate the gravity acceleration according to Equation (6).

Question of the experiment:

Q1/ Define the following:

- Restoring force
- Simple Pendulum

Q2/ What is the length of a pendulum with a period of 10 seconds?
Q3/ What is the effect on the period of a pendulum if you double its length?

Q4/ What is the effect on the period of a pendulum if you decrease its length by 5% ?

Q5/ Compare the theoretical result ($9.8 \mathrm{~m} / \mathrm{sec}^{2}$) with the measured experimental result (your result) and calculate the percent difference.

$$
\% \text { Difference }=\frac{\text { Experimental Result-Theoretical Result }}{\text { Theoretical Result }} \times 100 \% .
$$

By: Dr. Huda Masood AL-Zacko
 Department of Dental Technology

Example:
Q1-When the temperature of 10 kg of water is increased by
5 K, the heat absorbed is:

$$
\begin{aligned} Q & =(10 \mathrm{~kg})(4180 \mathrm{~J} / \mathrm{kg} . \mathrm{K})(5 \mathrm{~K}) \\ & =2.1 \times 10^{5} \mathrm{~J} .\end{aligned}
$$

 to 450 K . How much heat had to be transferred to the iron?
 $=3.6 \times 10^{5} \mathrm{~J}$.
H.W.: A hot 1 kg chunk of copper is allowed to cool to $100^{\circ} \mathrm{C}$. If the copper gave off 231 kJ of energy, what was the initial temperature of the copper?
Calorimetry: Measuring Specific Heat

A simple calorimeter is a device used to measure changes in thermal energy.	
	A measured mass of a substance that has been heated to a high temperature is placed in the calorimeter.
	The calorimeter also contains a known mass of cold water at a measured temperature.
	The heat released by the substance is transferred to the cooler water.
	The change in thermal energy of the substance is calculated using the resulting increase in the water temperature.
	Dr. Huda Masood Al-Zacko- ALNOOR UNIVERSITY COLL

The operation of a calorimeter depends on the conservation
of energy in an isolated, closed system.

In an isolated, closed system, the change in thermal energy is equal to the heat transferred because no work is done. $\Delta E=Q=m C \Delta T=m C\left(T_{f}-T_{i}\right)$

$$
m_{A} C_{A} \Delta T_{A}+m_{B} C_{B} \Delta T_{B}=0
$$

then:

$$
\text { If } \Delta T=T_{f}-T_{i} \ldots . . \text { then: }
$$

$$
T_{f}=\frac{m_{A} C_{A} T_{A}-m_{B} C_{B} T_{B}}{m_{A} C_{A}+m_{B} C_{B}}
$$

$$
\begin{aligned}
& \text { Dr: Huda Masood AL-Zacko } \\
& \text { ALNOOR UNIVERSITY COLLEGE }
\end{aligned}
$$

Example:

Changes of State

The three most common states of matter are solids, liquids, and gases.
 - As the temperature of a solid is raised, it usually changes to a liquid. At even higher temperatures, it becomes a gas. How can these changes be explained?

The heat, \mathbf{Q}, required to melt a solid of mass (m) is given
by:

$$
Q=m H_{f}
$$

When a liquid freezes, an amount of heat:

$$
=-m H_{f},
$$

must be removed from the liquid to turn it into a solid.
Similarly, the heat, Q , required to vaporize a mass, (m) of
liquid is given by:
When a vapor condenses to a liquid, an amount of heat,
$Q=-m H_{v}$ (the vapor.

$=4.39 \times 10^{2} \mathrm{KJ}$

Calculate the total amount of heat needed.

$Q_{\text {total }}=Q_{\text {melt of ice }}+Q_{\text {heat liquid }}$ $=5.01 \times 10^{2} K \mathrm{~J}+4.39 \times 10^{2} \mathrm{KJ}$

$$
=9.4 \times 10^{2} K \mathrm{~J}
$$

$=9.4 \times 10^{5} \mathrm{~J}$

> Dr. Huda Masood AL-Zacko
ALNOOR UNIVERSITY COLLEGE

[^8] $140^{\circ} \mathrm{C}$. How much heat is absorbed? $\begin{aligned} Q_{\text {total }} & =m C_{\text {water }} \Delta T+m H_{v}+m \mathrm{C}_{\text {steam }} \Delta T \\ & =(0.2 \mathrm{~kg})\left(4180 \mathrm{~J} / \mathrm{kg}^{\circ} \mathrm{C}\right)\left(100^{\circ} \mathrm{C}-60^{\circ} \mathrm{C}\right) \\ & +(0.2 \mathrm{~kg})\left(2.26 \times 10^{6} \mathrm{~J} / \mathrm{kg}\right) \\ & +(0.2 \mathrm{~kg})\left(2020 \mathrm{~J} / \mathrm{kg}^{\circ} \mathrm{C}\right)\left(140^{\circ} \mathrm{C}-100^{\circ} \mathrm{C}\right) \\ & =502 \mathrm{~kJ}\end{aligned}$ H. W.: How much heat is absorbed by $1 \times 10^{2} \mathrm{~g}$ of ice at $-20^{\circ} \mathrm{C}$ to become water at $0^{\circ} \mathrm{C}$?

Torque and Rotational Equilibrium

Purpose: To investigate torques on rigid bodies and find unknown metal mass.

Theory: The force that produces or tends to produce rotation or torsion called as Torque or moment of a force, it is the measure of the force that can cause an object to rotate about an axis. In physics, it is simply the tendency of a force to turn or twist.

About axis of rotation (Figure 1) torque is the vector product of the force and the distance to the axis (lever arm):

$$
\begin{equation*}
\overrightarrow{\boldsymbol{\tau}}=\overrightarrow{\boldsymbol{F}} \times \overrightarrow{\boldsymbol{r}} \tag{1}
\end{equation*}
$$

where $\overrightarrow{\boldsymbol{F}}$: is the strength of the force that is acting on the arm from direction that is perpendicular to the arm.
$\overrightarrow{\boldsymbol{r}}$: is the lever arm.
Therefore, the magnitude of the torque is:

$$
\tau=F r \sin \theta
$$

Torque is a vector quantity. Its direction is normal to the plane containing \mathbf{r} and \mathbf{F}. When you cross \mathbf{r} into \mathbf{F} using the right-hand rule, your thumb points in the direction of the torque.

For convenience, torques are designated by the circular directions of motion that they tend to cause (clockwise and counter-clockwise).

A rigid body can rotate about a specific axis in only two directions, clockwise or counter-clockwise (Figure 2). Clockwise torques produce clockwise rotational motion and counterclockwise torques cause counterclockwise rotational motion.

Figure 2
The rotation will not begin or change if the applied torques are balance (the system in rotational equilibrium). The condition for rotational equilibrium is that "the net torque on an object about some point in the body is zero":

$$
\begin{equation*}
\sum \vec{\tau}=\sum \vec{\tau}_{C C W}+\sum \vec{\tau}_{C W}=0 \tag{2}
\end{equation*}
$$

where $\vec{\tau}_{C C W}$ and $\vec{\tau}_{C W}$ are the counterclockwise and clockwise torques. Conventionally, the counterclockwise direction is positive (Positive torque), and the clockwise direction is negative (Negative torque).

For the system in Figure 3, the condition for rotational equilibrium becomes:

$$
\begin{equation*}
F_{1} r_{1}=F_{2} r_{2}+F_{3} r_{3} \tag{3}
\end{equation*}
$$

In this case the counterclockwise torque is $F_{1} r_{1}$ and the clockwise torques are $F_{2} r_{2}$ and $F_{3} r_{3}$. According to Newton's Second Law $\left(W_{i}=F_{i}=m g\right)$:

$$
\begin{equation*}
m_{1} r_{1}=m_{2} r_{2}+m_{3} r_{3} \tag{4}
\end{equation*}
$$

You can use the equation of balanced torques to find an unknown quantity. Assume the bar above is in static equilibrium and the force exerted on the bar are due to three masses hanging at the indicated positions. Then the unknown mass (for example m_{1}) is:

$$
\begin{equation*}
m_{1}=\frac{m_{2} r_{2}+m_{3} r_{3}}{r_{1}} \tag{5}
\end{equation*}
$$

Equipment: Lab balance, Meter stick, Balance stand for meter stick, Set of mass, Hooked mass set, small \& unknown metal mass.

Procedure:

1. Balance the meter stick in a horizontal position on its supports with no weights attached.
2. Suspend three masses from the meter stick as indicated in the sketch (Figure 4) and move them until you balance the meter stick. Record the mass values and their positions.

Figure 4
3. Determine the lever arm associated with each mass and record the values in the data table below. Compute the mass times the lever arm for each mass (The torque is the weight times the lever arm).

	Mass (g)	Lever arm (cm)	Direction (CW or CCW)	Torque (g.cm)
1.				
2.				
3.				

4. Compare the clockwise and counterclockwise torques (by Equation 4) to find how much the net torque differ from the theoretical value of zero.
5. To find an unknown metal mass: restore balance, then suspend unknown mass from one side of the meter stick.
6. Adjusting the position to balance the system, then use the equilibrium condition to determine the mass (Equation 5).
7. Finally, check your result by measuring the unknown mass with for example electronic balance (here: two weighs must be equal), or by suspending a block that has the same mass value as you found (here: the system must be balance).

Question of the experiment:

Q1/ Define:

- Torque,
- Rotational equilibrium

Q2/ A seesaw support two people who weigh 455 N and 535 N , respectively. The 535 N person is 1.5 m from the center. Where does the smaller person sit to balance the seesaw?

Viscosity of Liquid

Purpose: Determination the coefficient of viscosity for glycerin using a small ball drop device.

Theory: When a body falls through a highly viscous liquid, it is retarded by the force of viscosity exerted on it by the fluid. This force is frictional force between different layers of the liquid and the body.

When we gently place a ball on the surface of the liquid, as the ball is immersed into the liquid, three different forces act on the ball. These are:
i. Weight of the ball, F_{w} which acts vertically downward.
ii. Buoyancy force of the liquid on the ball, F_{b} which acts vertically upward.
iii. Drag force on the ball due to viscosity of the liquid, F_{d} which always acts vertically upward.

Let the radius of the ball r, then the volume of the ball is $V=\frac{4}{3} \pi r^{3}$ and the mass of the ball is $m=\sigma V$, where σ is the density of the ball's material. So, the weight of the ball is:

$$
F_{w}=m g=\sigma V g=\sigma\left(\frac{4}{3} \pi r^{3}\right) g \ldots . .1
$$

When a ball is dropped into a fluid sample the gravitational force $\left(F_{w}\right)$ on the ball is larger than the buoyancy force $\boldsymbol{F}_{\boldsymbol{b}}$. This force can get using Archimedes principle for buoyancy of liquid on the ball (where ρ is the density of liquid):

$$
F_{b}=\rho\left(\frac{4}{3} \pi r^{3}\right) g \ldots \ldots .2
$$

So the net driving force F on the ball is:

$$
F=F_{w}-F_{b}=(\sigma-\rho)\left(\frac{4}{3} \pi r^{3}\right) g \ldots \ldots .3
$$

After a period time, the ball stops accelerating and falls with a constant speed called the terminal speed, and the net driving force will equilibrium with drag force (the net force is zero) that given due to viscosity by Stock's law:

Figure 2

$$
F_{d}=6 \pi r \eta v \ldots \ldots 4
$$

where v is the velocity of the ball and η is the coefficient of viscosity of the liquid, then:
or

$$
\begin{aligned}
F & =F_{d} \ldots \ldots .5 \\
F_{w} & =F_{b}+F_{d} \ldots \ldots 6
\end{aligned}
$$

Using (1), (2), (3) and (6) we can show that:

$$
\eta=\frac{2}{9} \frac{r^{2}}{v}(\sigma-\rho) g \ldots \ldots .7
$$

Equipment: Tiny stainless steel balls, Glass cylinder, Stop watch, Glycerin, and Two rubber bands.

Procedure:

1. Write the density of glycerin $\rho=1.23 \mathrm{~g} / \mathrm{cm}^{3}$, and density of the ball's material, $\sigma=7.8 \mathrm{~g} / \mathrm{cm}^{3}$.
2. Select the same sized balls that dropped into a measuring cylinder containing glycerin. Then measure ball's diameter using a Vernier calipers.
3. Fix a mark, A (as shown in figure 1) on a cylinder below the surface of glycerin such that the ball achieves its terminal velocity while passing this mark. Fix another mark near the bottom of the cylinder (mark B in Figure 1).

4. Measure the distance (h) between the two rubber bands (marks) and write it in the table.
5. Drop the ball at the middle of the top surface of the liquid. Then recorded the time (t) taken to travel a ball between two marks on the cylinder (as shown in Figure 3) by a stop watch. Take t_{1} and t_{2},
then measure the average readings \bar{t} to reduce or eliminate any error present.
6. Repeat above steps with different values of dropping distance (h). Then tabulate all the data as given below.

$h(\mathrm{~cm})$	$t_{1}(\mathrm{sec})$	$t_{2}(\mathrm{sec})$	$\bar{t}(\mathrm{sec})$

7. Plot graph with the distance (h) on the y-axis and the average time (\bar{t}) on the x-axis. The gradient of line of best fit will be the velocity of ball (in cm per sec).
8. Finally use equation (7) to measure the coefficient of glycerin's viscosity, by: $\eta=\frac{2}{9} \frac{r^{2}(\sigma-\rho) g}{\text { slope }}$

Question of the experiment:

Q1/ Define:

- Stock's law,
- Buoyancy force,
- Terminal velocity.

Q2/ A ball of diameter 2.5 mm is made of steel. It is released into glycerin. Calculate:
(a) Weight of the ball, (b) Buoyancy force, and the terminal velocity of ball. (use the coefficient of glycerin's viscosity from your result).

[^0]: Stress: is the force per unit area, denoted by $\boldsymbol{\sigma}$.
 It is the internal force, F, per unit area acting on the body: ,

 - The unit of stress is Nm^{-2}.
 or percentage change in dimension (e.g. length, shape or volume), denoted by ε.

 It is the fractional change in the bone length:

 - So Young's modulus or the modulus of elasticity:
 $=\frac{\sigma}{\varepsilon}=\frac{L F}{A \Delta L}$

[^1]: Another aspect of physics, which is involved in chewing, is a torque (τ) : it is a rotational force that is influenced by wo factors:

 The length (\boldsymbol{r}) of the arm that's being rotated,
 The strength of the force (F) that is
 acting on the arm from a direction
 that is perpendicular to the arm.
 $\vec{\tau}=\overrightarrow{\boldsymbol{F}} \times \overrightarrow{\boldsymbol{r}}$
 the more torque your jaw is capable of producing, therefore, people who have a longer lower jaw create more torque when they chew.

[^2]: Dr. Huda Masood AL-Zacko
 ALNOOR UNIVERSITY COLLEGE

[^3]: systems to move．

 －If a net force acts on an object，it will cause an acceleration
 If a net force acts on an object，it will cause an acceleration
 or deceleration of that object．The amount of acceleration or deceleration needed to move an object known as Dynamics Force．

 ## 2－Dynamics Force

 $\boldsymbol{F}=m a=\frac{m \Delta v}{\Delta t}$
 Dynamics Force．
 where a is the acceleration，m is the mass，and v is the velocity．
 oyכeZ－7ヲ pooseW epnH：Iव ALNOORUN
 ヨפヨา70כ 人LISУヨAINก पOON7V

 2
 2
 a
 Dynamics role.
 $F=m a=\frac{m \Delta v}{\Delta t}$

[^4]: It is the total energy of molecular motion in a substance.

[^5]:
 system if 2000 J of heat is added to the system and 2500 J of work is done on the system?

[^6]: Example

[^7]:

[^8]: 2. A 2×10^{-2} g sample of water at $60^{\circ} \mathrm{C}$ is heated to steam at
